#### ФГБНУ «НИИ АГиР им.Д.О.Отта»

ГНИИИ военной медицины МО РФ ИЭФБ РАН, Санкт-Петербург

# Методы компьютерного моделирования и прогнозирования в разработке новых аналогов прогестерона

ПЕТРОСЯН М. А., ТАБОРСКАЯ К. И., БЕЛИНСКАЯ Д. А.

Докладчик: Таборская Ксения Игоревна

#### Аналоги прогестерона и их использование

Применение гестагенных препаратов:

- -поддержка лютеальной фазы при ЭКО;
- »предотврашение эндометриальной гиперплазии в гормонозаместительной терапии;
- »лечение вторичной аменореи, дисфункциолнальных маточных кровотечений и эндометриоза;
- -онкотерапия (для лечения рака эндометрия, груди, простаты);
- >гормональная контрацепция

## Метод исследования биологической активности гестагенов

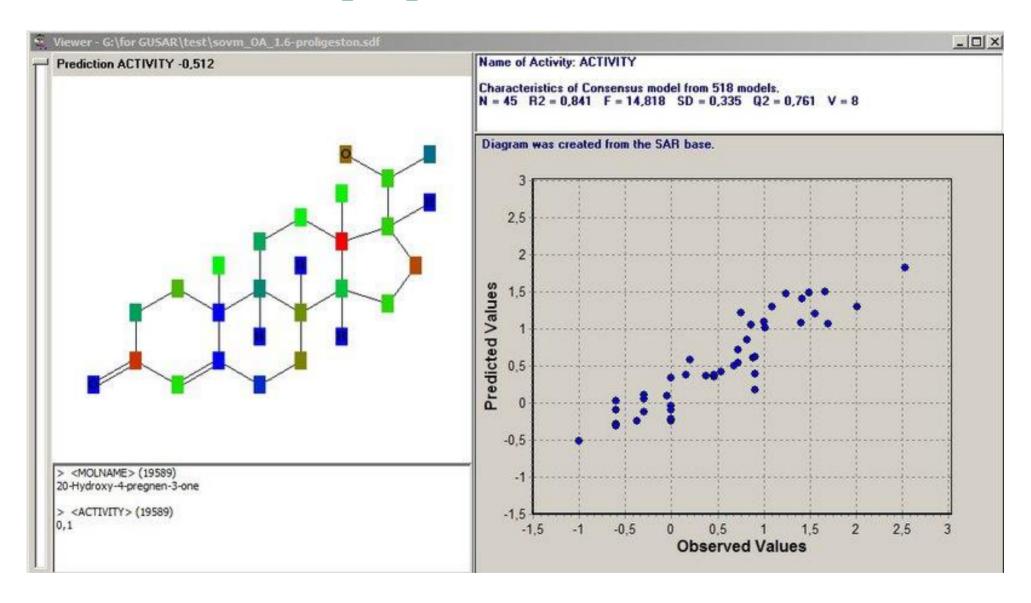
Tect Clauberg-McPhail – «золотой» стандарт оценки гестагенной активности

Неполовозрелым крольчихам проводят эстрогенную подготовку.

Затем подкожно/перорально вводят испытуемый гестаген.

На 14-ый день проводят гистологическое исследование.

# Степень секреторной трансформации эндометрия оценивают по шкале McPhail (баллы):




**Цель работы**: оценить возможность использования компьютерных методов моделирования и прогнозирования для поиска высокоактивных аналогов прогестерона.

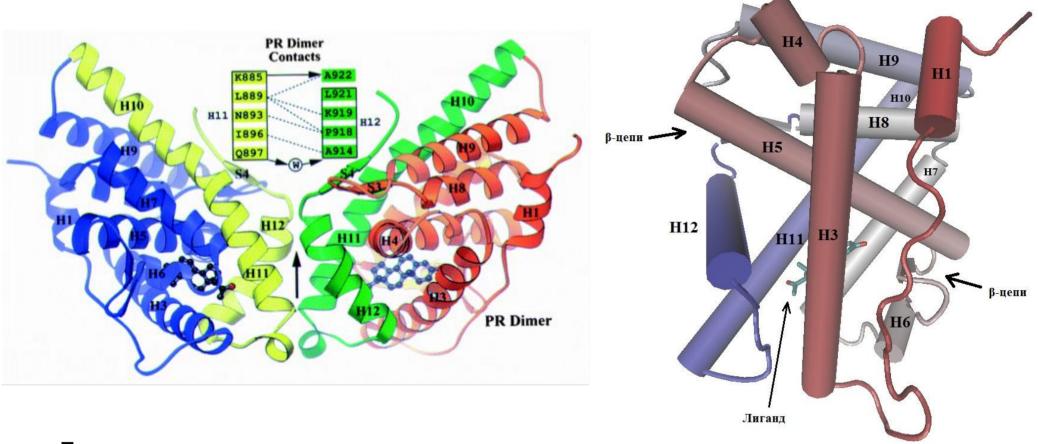
В соответствии с этой целью были поставлены задачи:

- 1. Создать базу данных из аналогов прогестерона с известной биологической активностью;
- 2. Используя QSAR методы, построить модель прогноза биологической активности новых препаратов.
- 3. Осуществить докинг ряда известных гестагенов к рецептору прогестерона человека.
- 4. Оценить возможность использования компьютерных методов для прогнозирования биологической активности гестагенов.

# Прогноз биологической активности с помощью программы GUSAR.



Характеристики консенсус модели:  $R^2=0.84$ ; N=45.


## Результаты предсказания биологической активности аналогов прогестерона в программе GUSAR

| Название            | Структура                                                                        | Экспериментальная<br>ОБА | Предсказанная<br>ОБА |
|---------------------|----------------------------------------------------------------------------------|--------------------------|----------------------|
| Мегестрол<br>ацетат | H <sub>3</sub> C CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 33                       | 19                   |
| АМОЛ                | H <sub>3</sub> C<br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub>        | 61                       | 119                  |
| Бутират АМОЛа       | H <sub>3</sub> C<br>CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub>        | 11                       | 20                   |

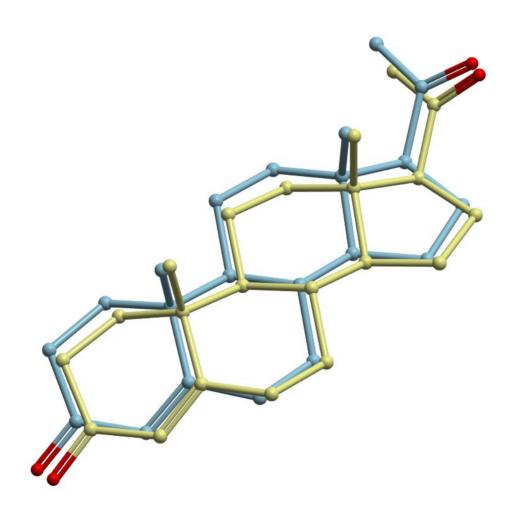
### Результаты предсказания биологической активности аналогов прогестерона в программе GUSAR

| Название                     | Структура                                                                                       | Эксперимента<br>льная ОБА | Предсказанн<br>ая ОБА |
|------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------|
| Пропионат АМОЛа              | H <sub>3</sub> C O O CH <sub>3</sub> CH <sub>3</sub>                                            | 12                        | 18                    |
| Гемисукцинат<br>АМОЛа        | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                                 | 12                        | 32                    |
| Пролигестон                  | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 2                         | 2                     |
| Новый аналог<br>прогестерона |                                                                                                 |                           | 10                    |

#### Структура ядерного рецептора прогестерона (PR, NR3C3)



#### Доменная структура димера рецептора прогестерона:


N-терминальный регуляторный домен – димеризация, транскрипционная терминация Центральный ДНК- связывающий домен

Шарнирный регион

Лиганд-связывающий домен

С-терминальный лиганд-связывающий домен – взаимодействие с шаперонными белками

#### Результаты контрольного докинга прогестерона в лигандсвязывающий домен рецептора.



Голубой — прогестерон из файла с РСА. Бежевый - докинг модели структуры прогестерона.

#### Исследованные методом молекулярного докинга гестагены.

| Название            | Структура                                                                                                                       | ОБА** | Kd*, нМ              | Применение***                                                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Мегестрол<br>ацетат | CH <sub>3</sub> | 2700  | 1,5 (1,4; 1,9)       | Противоопухолевое<br>средство.                                                                                                                  |
| АМОЛ                | H <sub>3</sub> C<br>CH <sub>3</sub> , H<br>CH <sub>3</sub>                                                                      | 337   | 1,6 (1,4; 2,0)       | Контрацептив у женщин.                                                                                                                          |
| Левоноргестрел      | H <sub>3</sub> C OH CH                                                                                                          | 5,2   | 33,1 (32,5;<br>40,1) | Рак молочной железы, неоперабельный рак эндометрия, кахексия, анорексия и значительное (без явных причин) снижение массы тела у больных СПИДом. |

<sup>\*</sup> указаны медианы (25 и 75 процентили)  $K_d$  по кластеру, рассчитанных программой Autodock 4.2. \*\* данные литературы (Камерницкий, 2005; Сергеев, 2005; Зейналов, 2012).

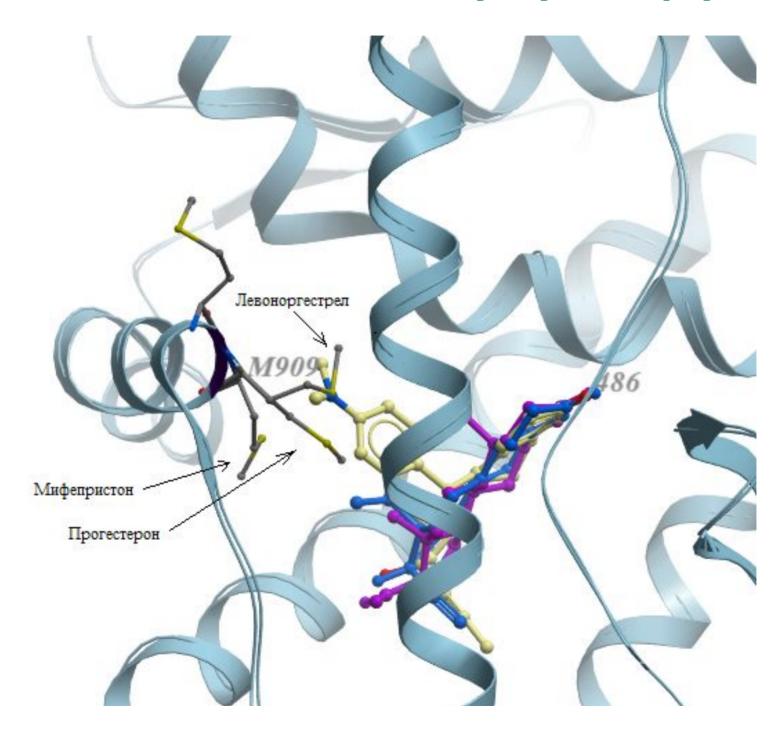
<sup>\*\*\*</sup> данные справочника «Регистр лекарственных средств России»

#### Исследованные методом молекулярного докинга гестагены.

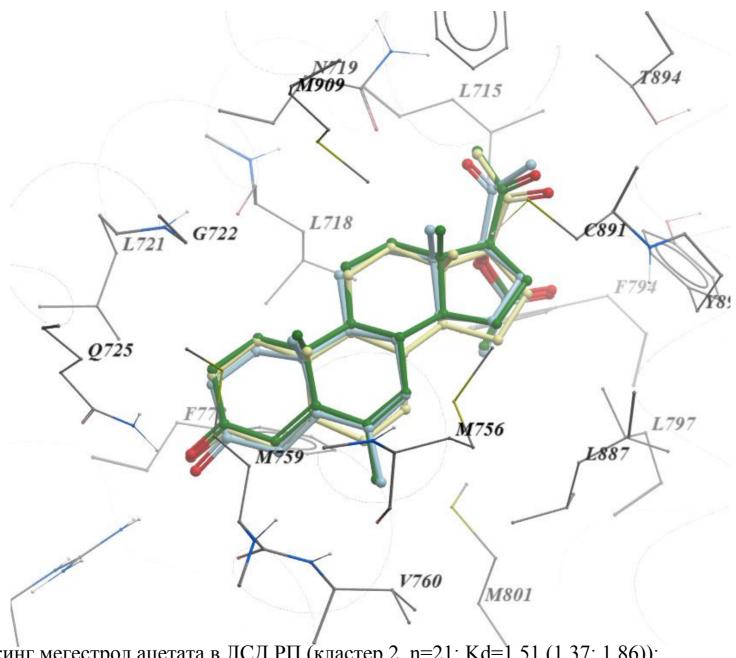
| Название                                | Структура                                                                                       | ОБА** | Kd*, нМ        | Применение***                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|-------|----------------|--------------------------------------------------|
| 16а,17а-<br>циклогексано<br>прогестерон | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub>                                 | 2,4   | 1,8 (1,6; 2,2) | Подавление<br>пролиферации<br>опухолевых клеток. |
| Пролигестон                             | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 1,6   | 3,2 (2,8; 3,8) | Контрацептив для<br>животных.                    |
| Прогестерон                             | CH <sub>3</sub> H                                                                               | 1     | 2,5 (2,4; 2,7) | ГЗТ, эндометриоз и др.                           |

<sup>\*</sup> указаны медианы (25 и 75 процентили)  $K_d$  по кластеру, рассчитанных программой Autodock 4.2. \*\* данные литературы (Камерницкий, 2005; Сергеев, 2005; Зейналов, 2012).

<sup>\*\*\*</sup> данные справочника «Регистр лекарственных средств России»

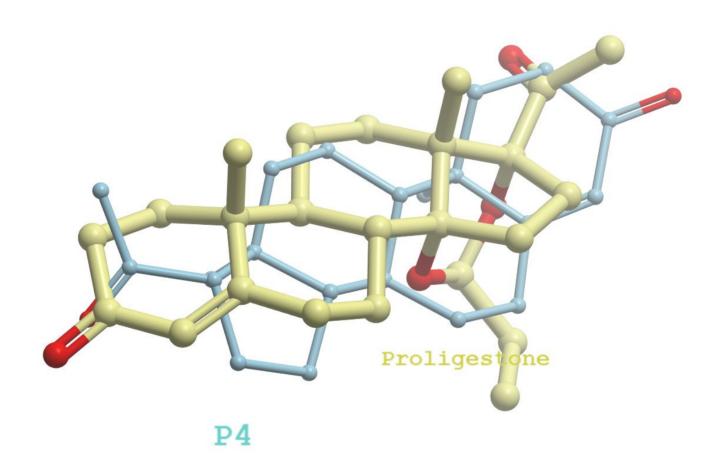

#### Исследованные методом молекулярного докинга гестагены.

| Название                                   | Структура                                                       | ОБА**                              | Kd*, нМ                 | Применение***                                                                                                                                        |
|--------------------------------------------|-----------------------------------------------------------------|------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16а,17а-<br>циклогекс-Зено-<br>прогестерон | CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> CH <sub>3</sub> | 0,5                                | 1,7 (1,4; 2,6)          | Производное прегна-D-<br>пентаранов. Не<br>применяется в качестве<br>лекарственного средства.                                                        |
| Дидрогестерон                              | CH <sub>3</sub> CH <sub>3</sub>                                 | 0,3                                | 3,1 (3,0; 3,3)          | Прогестероновая недостаточность, эндометриоз; дисменорея; нерегулярные менструации; аменорея, маточные кровотечения; предменструальный синдром, ЗГТ. |
| Мифепристон                                | H³C CH³OH C™C CH³                                               | антогонист<br>РП (IC50=<br>0.2 nM) | 119,7 (113,7;<br>658,5) | Контрацептив в первые месяцы беременности.                                                                                                           |


<sup>\*</sup> указаны медианы (25 и 75 процентили)  $K_d$  по кластеру, рассчитанных программой Autodock 4.2. \*\* данные литературы (Камерницкий, 2005; Сергеев, 2005; Зейналов, 2012).

<sup>\*\*\*</sup> данные справочника «Регистр лекарственных средств России»

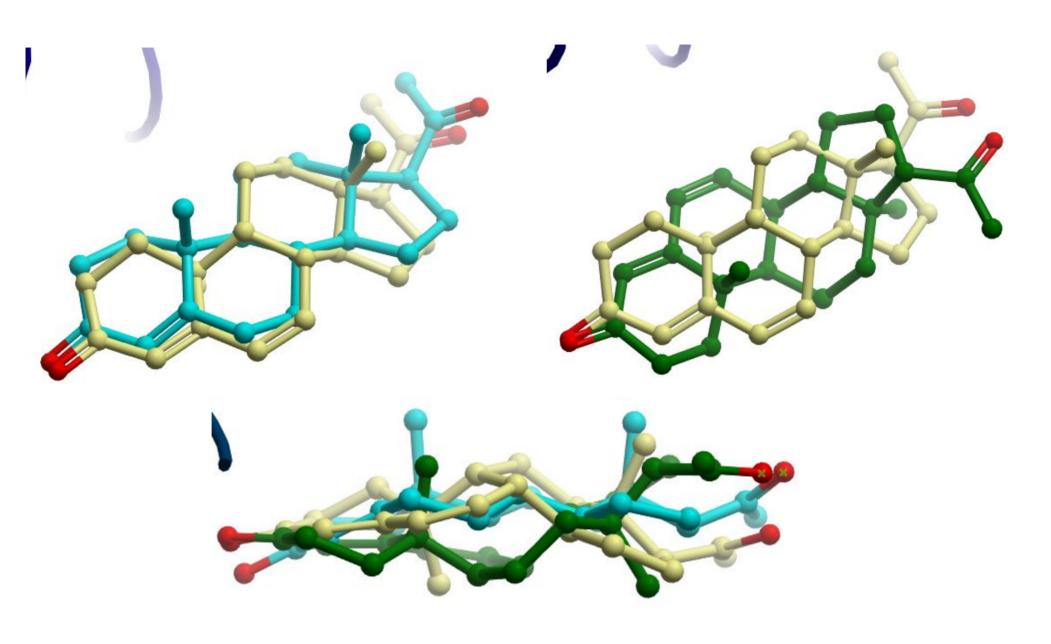
#### Изменение положения Met909 в PCA левоноргестрела и мифепристона.




#### Результаты конформационного анализа мегестрол ацетата



Зеленый — докинг мегестрол ацетата в ЛСД РП (кластер 2, n=21; Kd=1,51 (1,37; 1,86)); Голубой — докинг мегестрол ацетата в ЛСД РП (кластер 1, n=11; Kd=1,58 (1,31; 1,86)); Бежевый — прогестерон из РСА.


#### Результаты конформационного анализа пролигестона



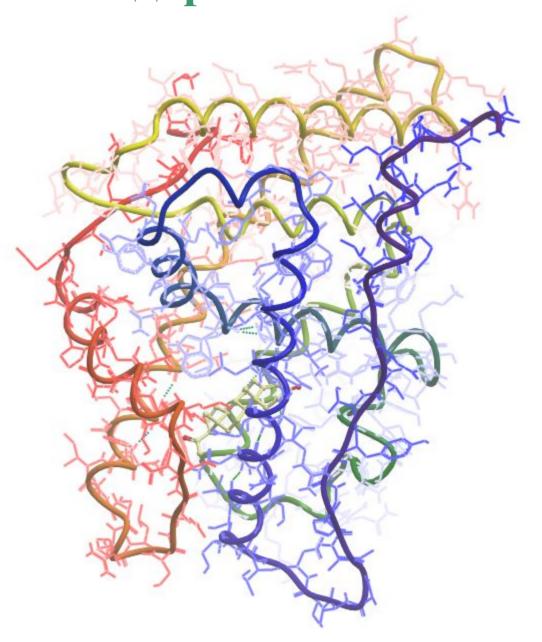
Голубой — прогестерон из РСА.

Бежевый — докинг пролигестона в ЛСД РП (кластер 2, n=20; Kd=2,3 (2,2; 2,7));

#### Результаты конформационного анализа дидрогестерона



Голубой — прогестерон из РСА.


Бежевый — докинг дидрогестерона в ЛСД РП (кластер 4, n=13; Kd=3,1 (3,0; 3,3));

Зеленый — докинг дидрогестерона в ЛСД РП (кластер 3, n=2; Kd=3,0 (3,0; 3,0)).

#### Заключения:

- 1. QSAR методы позволяют на ранних этапах исследования гестагенов отобрать соединения явно обладающие активностью, однако этот метод не может корректно ранжировать по степени БА аналоги прогестерона.
- 2. Метод докинга применим для ранжирования гестагенов по степени связывания с рецептором прогестерона, а также для определения положения гестагенов в ЛСД РП. Этот метод также применим для отбора активных аналогов прогестерона на ранних этапах исследования.

#### Благодарю за внимание!

