

Chemical multiverse and diversity of food chemicals

Juan F. Avellaneda-Tamayo, Ana L. Chávez-Hernández, Diana L. Prado-Romero, José L. Medina-Franco*

DIFACQUIM Research Group School of Chemistry, Universidad Nacional Autónoma de México September 19 2023

XXIX Symposium on Bioinformatics and Computer-Aided Drug Discovery

Introduction

- Canadian Institute of Health Research (CIHR), the Canada Foundation for Innovation, and the Metabolomics Innovation Centre (TMIC).
- 70,926 compounds from 797 foods*.
- FooDB contains more than 100 separate data fields.
- PCP, biological, organoleptic.

FooDB. Available at https://foodb.ca/ (accessed on September 18th, 2023)

for Innovation

pour l'innovation

Introduction

- 28,883 **FOOD Compounds**, comparing vs. GRAS, approved drugs, and NPs from ZINC.
- ChemMaps chemical similarity
- PCP related to oral biodisponibility
- Molecular complexity by sp³ hybridized carbon atoms \rightarrow highest complexity.
- Scaffold content \rightarrow abundance of acyclic compounds. Scaffolds comparable to NPs and drug type. High content of polyphenols.
- Global diversity with Consensus Diversity Plot.

Naveja JJ, Rico-Hidalgo MP, Medina-Franco JL. F1000Res. 7 (2018), 993.

Objectives

• Chemical content, diversity, chemical space, and potential as bioactive compounds from food chemicals.

Methods

- 1. Data curation (FooDB, FDA-approved drugs, UNPD-A, commercially available FooDB on ZINC20).
- 2. Overlap of compounds and scaffolds.
- 3. Molecular descriptors and FPs.
- 4. Scaffold content and diversity.
- 5. Natural product likeness score.
- 6. Structural diversity Tanimoto's coefficient.
- 7. Chemical multiverse visualization.
- 8. Chemical profiling by NPClassifier.

A.L. Chávez-Hernández and J.L. Medina-Franco, Artificial Intelligence in the Life Sciences 3 (2023), pp. 100066.

Main results: overlapping compounds

• Specific drugs are also present.

P. Anand and K. Bley, Br. J. Anaesth. 107 (2011), pp. 490–502.

Ethinylestradiol

Cycloserine

Main results: molecular descriptors

Tendency for **larger and less polar molecules** in food chemicals.

Tendency for **alquilic molecules**, high fraction of sp³ and rotational bonds, less content of aromatic and alicyclic rings (relation to scaffold content).

Changes in distribution vs. previous version of FooDB.

F.I. Saldívar-González, M. Valli, A.D. Andricopulo, V. da Silva Bolzani and J.L. Medina-Franco, J. Chem. Inf. Model. 59 (2019), pp. 74–85.

Main results: distribution of pairwise Tanimoto similarity

Mean (median) similarity

CS its	ECFP4 1024 bits	ECFP6 1024 bits	MAP4 2048 bits
5 2)	0.44 (0.47)	0.40 (0.42)	0.23 (0.20)
5 4)	0.10 (0.09)	0.08 (0.08)	0.01 (0.00)
)))	0.10 (0.09)	0.08 (0.08)	0.01 (0.00)
5 2)	0.12 (0.09)	0.09 (0.08)	0.02 (0.00)

N. Singh, R. Guha, M.A. Giulianotti, C. Pinilla, R.A. Houghten and J.L. Medina-Franco, J. Chem. Inf. Model. 49 (2009), pp. 1010–1024.

Conclusive ideas

- Large overlap among food chemicals, natural products, and approved drugs.
- **Broad** and **specific** distribution of properties of food chemicals (drug type, constitutionals, complexity).
- Lower scaffold and fingerprint-based **diversity** regardless of the fingerprint.
- Wider coverage of chemical **multiverse**.
- The most represented biosynthetic pathway predicted was **fatty acids**.
- Further studies are adequate for the development of machine learning models and

bioactive compounds based on food chemicals.

Perspectives

• J. Avellaneda, A. Chávez, D. Prado, J. Medina, Chemical multiverse and diversity of food chemicals, **SAR and QSAR in Environmental Research**, (2023) under review.

- Ring chemical space
- Scaffold
- Fragments
- Maximum common substructure

Acknowledgments

CONSEJO NACIONAL DE HUMANIDADES CIENCIAS Y TECNOLOGÍAS

Scholarship CVU 1270553

PAPIIT Grant No. IV200121

medinajl@unam.mx

X @difacquim

O@difacquim_unamIm@avellanedajuan

10