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Protein representations in bioinformatics

Growth of the number of available protein Protein structural information has become
sequences (primary structure) available with AlphaFold2 [1] (tertiary structure)

Transformers (ESM2 [2], ProtT5 [3]) AA'gigs" % Graphs
+ deep networks J) "\) + use of 3D structure

- no use of 3D structure - need for equivariance
)
\.% - shallow networks

Our idea: add protein structural information to a transformer model

Image credits: https://byjus.com/biology/proteins-structure-and-functions/
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Existing attempts to use 3D structure in representations

e ProstT5 [4]
o 3Di alphabet (1D-strings representing protein 3D structure (Foldseek [5])
o Train to translate between 3Di and amino acid sequences
o Mostly performs worse then sequence-only ProtT5 model on downstream tasks

e S-PLM [6]
o Represents structure as C_ contact maps, apply CNN to it

o Aligns sequence and structure embeddings with contrastive learning
o Extensive evaluation on various downstream tasks



Proposed StructPLM

e Amino acid side chains can exist only in a few positions - rotamers

e Add new tokens

© amino acid type

o backbone torsion angles ¢,

o side-chain rotamer type

o side-chain nonrotameric angle (if any)

e Binarize angles into 2 degree bins
e Compute smoothed cross-entropy loss on

angle tokens to perform angle regression:
o Penalize angle predictions based on the angle difference
o ltis better to predict 122° than 160° (when we have angle 120°)

Image credits: http://cib.cf.ocha.ac.jp/bitool/DIHED2/
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Experimental setup

Datasets: AlphaFold database: >500k structures, generated with AlphaFold2 - used for pre-training

Protein Data Bank: ~41k experimental structures - used for finetuning

Model: 12-layer (87 M parameters) RoBERTa model

Downstream task:

Per-residue prediction: prediction of protein stability change (AAG)
due to single mutations

We follow the setup of ABYSSAL [7], a top-performing neural network
for AAG prediction. It works upon ESM2 embeddings.

Train data: Mega dataset [8]

Our approach:

1. Train ABYSSAL on
StructPLM embeddings

2. Train ABYSSAL on
concatenation of ESM2
and StructPLM
embeddings

Test data: Mega dataset holdout, S669 [9], ssym [10], p53 [11], Myoglobin [12]
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Experimental results

Pearson correlation coefficient of different embeddings for

ddG prediction
Mega holdout S669 Ssym Myoglobin
B StructPLM mESM2 (12 Iayers)

M ESM2 (33 layers)
B ESM2 (33 layers) + ESM2 (12 layers)

StructPLM + ESM2 (33 layers)

StructPLM is mostly better than a
small ESM2 model (12 layers)

The concatenation of StructPLM
and ESM2 embeddings
increases the performance on a
downstream task of AAG
prediction



Conclusion

We proposed StructPLM that uses structural information inside pLM
e Small StructPLM model produces high-quality embeddings
[

Even embeddings from a small StructPLM model can enhance ESM2
embeddings on a downstream task

Further research:

e Perform extensive experiments with various downstream tasks
e Compare to existing structural models S-PLM and ProstT5
e Consider increasing the size of the model for better performance
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