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Protein representations in bioinformatics

Growth of the number of available protein 
sequences (primary structure)

Transformers (ESM2 [2], ProtT5 [3])

+ deep networks
- no use of 3D structure
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Protein structural information has become 
available with AlphaFold2 [1] (tertiary structure)

Graphs

+ use of 3D structure
- need for equivariance
- shallow networks

Our idea: add protein structural information to a transformer model

Image credits: https://byjus.com/biology/proteins-structure-and-functions/ 
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Existing attempts to use 3D structure in representations

● ProstT5 [4]
○ 3Di alphabet (1D-strings representing protein 3D structure (Foldseek [5])
○ Train to translate between 3Di and amino acid sequences
○ Mostly performs worse then sequence-only ProtT5 model on downstream tasks

● S-PLM [6]
○ Represents structure as Cα contact maps, apply CNN to it
○ Aligns sequence and structure embeddings with contrastive learning
○ Extensive evaluation on various downstream tasks
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Proposed StructPLM

● Amino acid side chains can exist only in a few positions - rotamers
● Add new tokens

○ amino acid type
○ backbone torsion angles φ, ψ
○ side-chain rotamer type
○ side-chain nonrotameric angle (if any)

● Binarize angles into 2 degree bins
● Compute smoothed cross-entropy loss on 

angle tokens to perform angle regression:
○ Penalize angle predictions based on the angle difference
○ It is better to predict 122° than 160° (when we have angle 120°)
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Experimental setup

Datasets: AlphaFold database: >500k structures, generated with AlphaFold2 - used for pre-training

Protein Data Bank: ~41k experimental structures - used for finetuning

Model: 12-layer (87 M parameters) RoBERTa model
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Our approach:

1. Train ABYSSAL on 
StructPLM embeddings

2. Train ABYSSAL on 
concatenation of ESM2 
and StructPLM 
embeddings

Downstream task:

Per-residue prediction: prediction of protein stability change (ΔΔG)     
due to single mutations

We follow the setup of ABYSSAL [7], a top-performing neural network       
for ΔΔG prediction. It works upon ESM2 embeddings.

Train data: Mega dataset [8]
Test data: Mega dataset holdout, S669 [9], ssym [10], p53 [11], Myoglobin [12]



Experimental results

StructPLM is mostly better than a 
small ESM2 model (12 layers)

The concatenation of StructPLM 
and ESM2 embeddings 
increases the performance on a 
downstream task of ΔΔG 
prediction
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Conclusion

● We proposed StructPLM that uses structural information inside pLM
● Small StructPLM model produces high-quality embeddings
● Even embeddings from a small StructPLM model can enhance ESM2 

embeddings on a downstream task

Further research:

● Perform extensive experiments with various downstream tasks
● Compare to existing structural models S-PLM and ProstT5
● Consider increasing the size of the model for better performance
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