

GENERATIVE HETERO-ENCODER MODEL FOR DE NOVO DESIGN OF SMALL-MOLECULE COMPOUNDS AS POTENTIAL INHIBITORS OF BCR-ABL TYROSINE KINASE

Karpenko Anna, Vaitko Timofey, Tuzikov Alexander, Andrianov Alexander National Academy of Sciences of Belarus Problem

Chronic myeloid leukemia (CML) is a clonal hematopoietic stem cell disorder and accounts for approximately 30% of the incidence of adult leukemias

DANGER

Currently available drugs have high toxicity and resistance

The incidence of CML increases with age

Miranda-Filho A, Piñeros M, Ferlay J, Soerjomataram I, Monnereau A, Bray F. Epidemiological patterns of leukaemia in 184 countries: a population-based study. *Lancet Haematol* (2018) 5(1):e14–24. 10.1016/S2352-3026(17)30232-6

de la Fuente J, Baruchel A, Biondi A, de Bont E, Dresse MF, Suttorp M, et al. Managing children with chronic myeloid leukaemia (CML): recommendations for the management of CML in children and young people up to the age of 18 years. Br J Haematol (2014) 167(1):33–47. 10.1111/bjh.12977

Pipeline of solution

Phase	1. Target discovery	2. Screening	3. Lead generation	4. Validation
Goal	Find all targets from literature and Protein Data Bank	Create a molecular libraries Molecular docking	Selection and development of neural network architecture Generate molecules	Molecular docking Properties prediction

Crystal structure of the ABL kinase domain associated with the DFG-out inhibitor AP24534 Crystal structure of the domain of the mutant kinase ABL T315I associated with the DFG-out inhibitor AP24589

Molecular docking with rigid receptor and flexible ligand

ENCODER 3

DECODER 2

Solution. ML WORKFLOW

			3. Lead generation
Goal	Find all targets from	Create a molecular	Selection and development of
	literature and Protein	library	neural network architecture
	Data Bank	Molecular docking	Generate molecules

					1 4
				4. Validation	
Goal	Find all targets from literature and Protein	Create a molecular library	Selection and development of neural network architecture	Molecular docking	
	Data Bank	Molecular docking	Generate molecules	Properties prediction	

$$LF(s) = CCE(s) + 0.1 \cdot CCL(s),$$

- **CCE(s)** is the categorical cross entropy,
- **s** is a molecule in the SMILES format,
- **CCL(s)** (CustomChemLoss) is the function that imposes penalties for violations of a molecule stereochemistry and the absence of 2-arylaminopyrimidine in its chemical structure.

				4. Validation
Goal	Find all targets from literature and Protein Data Bank	Create a molecular library Molecular docking	Selection and development of neural network architecture Generate molecules	Molecular docking Properties prediction

Results

THANK YOU

This study was supported by the State Program of Scientific Research "Convergence 2025" (subprogram "Interdisciplinary research and emerging technologies", project 3.4.1).

Hanna Karpenka

rfe.Karpenko@gmail.com

https://www.linkedin.com/in/anna-karpenko-by/