XXIX Symposium on Bioinformatics and Computer-Aided Drug Discovery

IBMC

In silico prediction of cell-lines cytotoxicity of drug-like compounds based on their structural formula

Alexey Lagunin

Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.

Oncological diseases

Bray, F., et al. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2018, 68, 394–424

Cell-line cytotoxicity studies

- More 1000 cell-lines are used in the studies;
- It accelerates the process of drug discovery;
- It estimates the efficacy of drug-candidates against tumor cell-lines;
- It estimates toxicity in normal cell-lines;
- It allows selecting the most effective and safe compounds;
- In spite of introduction the first panel of cell-lines NCI60 (several dozens years ago) only several hundreds thousand of compounds have been tested.

Three web-applications for cell-line cytotoxicity prediction

- **CLC-Pred (CLC-Pred 2.0)** Cell-Line Cytotoxicity Predictor for *in silico* prediction of human cell line cytotoxicity for drug-like compounds;
- **BC CLC-Pred** Quantitative and qualitative prediction of cytotoxicity for drug-like compounds in 9 Breast Cancer cell-lines;
- CLC-Pred Synergy Prediction of synergistic cytotoxicity of drug pairs in 34 NCI60 cell lines.

CLC-Pred (Cell-Line Cytotoxicity Predictor) was introduced in 2018

- It used PASS (MNA descriptors and Bayesian-like algorithm) for SAR modeling;
- It predicts 278 tumor and 27 non tumor cell lines with mean accuracy of prediction (AUC LOO CV) more than 0.93;
- 59,882 unique structures;
- More 100 citations.

International Journal of Molecular Sciences

Submit to this Journal

Review for this Journal

Propose a Special Issue

Article Menu

Academic Editor

~

Hideko Sone

Subscribe SciFeed

Recommended Articles

Related Info Links	~

More by Authors Links

K

Open Access Article

CLC-Pred 2.0: A Freely Available Web Application for In Silico Prediction of Human Cell Line Cytotoxicity and Molecular Mechanisms of Action for Druglike Compounds

by S Alexey A. Lagunin ^{1,2,*} , Anastasia V. Rudik ¹, Pavel V. Pogodin ¹, Polina I. Savosina ¹, Olga A. Tarasova ¹, Alexander V. Dmitriev ¹, Sergey M. Ivanov ^{1,2}, Nadezhda Y. Biziukova ¹, Dmitry S. Druzhilovskiy ¹, Dmitry A. Filimonov ¹ and Vladimir V. Poroikov ^{1,*}

¹ Department of Bioinformatics, Institute of Biomedical Chemistry, 119435 Moscow, Russia

² Department of Bioinformatics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia

Authors to whom correspondence should be addressed.

Int. J. Mol. Sci. 2023, 24(2), 1689; https://doi.org/10.3390/ijms24021689

Received: 1 December 2022 / Revised: 4 January 2023 / Accepted: 12 January 2023 / Published: 14 January 2023

(This article belongs to the Section Molecular Toxicology)

Browse Figures

Versions Notes

ChEMBL (v. 31) and PubChem (February 2022) data cell-line cytotoxicity

- **128,545** unique structures of compounds tested against 1162 cell-lines;
- 379,767 experimental values (IG50, IC50, and % inhibition);
- 438 human cell-lines (391 tumor and 47 non tumor cell-lines) with the accuracy of prediction (AUC LOO CV) higher than 0.8 were selected after the PASS training;
- 10,000 nM (or 50%) is a threshold between active and inactive compounds.

ChEMBL data. Distribution of 438 cell lines by organs and tissue

Developmental Therapeutics Program (DTP) NCI60 data

- 22,726 unique structures tested against NCI60 cell lines.
- 1,262,878 experimental GI50 values measured by the same protocol.

https://dtp.cancer.gov/

NATIONAL CANCER INSTITUTE

DCTD Division of Cancer Treatment & Diagnosis

DTP Developmental Therapeutics Program

Home	Discovery & Development Services 👻	Repositories 🔻	Databases & Tools 🔻	Grants	Our Organi				
The N	The NCI Development Therapeutics Program (DTP) provides services and resources to the academic and								
thera	peutic agents.	ADD-2023	iscovery and developine	ant of fiew	cancer				

DTP NCI60 data

BCADD-2023

ChEMBL and PubChem data on mechanisms of action

- 656,011 unique structures;
- **957,545** records with experimental values;
- **2,170** molecular mechanisms of action with the accuracy of prediction (AUC LOO CV) higher than 0.8 were selected after the PASS training.

Number of predicted MoA classifying by ChEMBL protein classification

CLC-Pred prediction results of general cell line cytotoxicity for erlotinib

CLC-Pred 2.0 results of cytotoxicity prediction based on TDP NCI60 data for erlotinib at (a) at 1 nM, (b) at 10 nM.

14

CLC-Pred 2.0 results of cytotoxicity prediction based on TDP NCI60 data for erlotinib at 100 nM.

Cell-	Line	TDP NCI-60 (1nM)	TDP NCI-	60 (10r	nM) TDF	P NCI-60 (100nM)	arget		
Сору	E	xcel CSV PDF	Print						
Pa 🔻	Pi 🕴	DTP NCI60 cell-	Tissue of origin	Sex	Epithelial	Histology	Ploidy	¢ p53¢	IAP*
0.344	0.098	OV:IGROV1	Ovarian	F	yes	Cystoadenocarcinoma pd	4n+/-, Near- tetraploid 92+/- (81- 103)	MT	0.871
0.322	0.087	BR:T-47D	Breast	F	yes	infiltrating ductal carcinoma	2n+, Hyperdiploid (47-57)	MT	0.874
0.293	0.189	LC:HOP-92	Non-Small Cell Lung	Μ	yes	Large cell-ud	4n+/-, Near- tetraploid 92+/- (81- 103)	MT	0.829
0.267	0.177	RE:UO-31	Renal	F	yes	Renal cell carcinoma- vpd	2n+/-, Near-diploid 46+/- (35-57)	WT	0.853

CLC-Pred 2.0 with prediction results of molecular mechanisms of action for erlotinib

Cell-L	ine TD	P NCI-60 (1nM) TDP NCI-60 (10nM)	TDP NC	I-60 (100nM)	Target	
Сору	Excel	CSV PDF Print				
-	D'			ChEMBL Prote	in family	
Ра	PI ₹	Mechanism of action	UniProt 🛡	Level 1	Level 2	
0.882	0.003	Epidermal growth factor receptor antagonist	P00533	Enzyme	Kinase	0.975
0.710	0.001	Cyclin-G-associated kinase inhibitor	O14976	Enzyme	Kinase	0.968
0.704	0.003	Receptor tyrosine-protein kinase erbB-2 antagonist	P04626	Enzyme	Kinase	0.986
0.623	0.005	Vascular endothelial growth factor receptor 2 antagonist	P35968	Enzyme	Kinase	0.974

Bile salt export pump inhibitor 0.838 0.438 0.044 095342 Transporter transporter Platelet-derived growth factor receptor Pi × Search × Search × Showing 1 to 10 of 70 entries Previous 2 Next 1 3 5 6

* - IAP: Invariant Accuracy of Prediction (equal to AUC value) was calculated by leave-one-out cross-validation procedure

Primary active

ChEMBL data for Breast Cancer cell-lines

		GI50			IC50	
	pGI50	Active	Not active	pIC50	Active	Not active
T47D	[3.894:10.7]	369	1140	[1.567:10.096]	440	1263
ZR-75-1	[3.99:8.698]	100	83	[4.125:9.619]	73	40
MX1	-	—	—	[3.57:8.72]	118	151
Hs-578T	[3.88:9.95]	105	364	[1.367:8.866]	41	142
MCF7-DOX	—	_	-	[4.0:8.638]	11	27
MCF7	[3.585:11.30]	1635	3348	[0.022:13.69]	5213	19998
Bcap37	-	—	-	[3.05:6.568]	5	267
MCF7R	-	—	-	[4.17:8.79]	67	11
BT-20	[4.167:8.097]	7	21	[1.816:8.523]	32	145

GUSAR - General Unrestricted Structure-Activity Relationships

Filimonov D.A., et al. (2009). SAR and QSAR Environ. Res., 20 (7-8), 679-709

QNA: Quantitative Neighborhoods of Atoms descriptors

° 4H ^C ¹ O ² H ⁵	C =	0 1 1 0 1 0 1 0 0 1	1 1 0 0 0 0 0 0 0 0	0 1 0 Exp(0 0	$\left(-\frac{1}{2}\mathbf{C}\right) =$	1.40 -0.59 -0.57 -0.57 0.14	-0.59 1.27 0.14 0.14 -0.54	-0.57 0.14 1.13 0.13 -0.02	-0.57 0.14 0.13 1.13 -0.02	0.14 -0.54 -0.02 -0.02 1.13
a)		b)					c)			
		EA	IP	A	В	Р	Q			
	С	1.263	11.26	6.262	0.316	-0.00218	-0.18	20		
	0	1.461	13.62	7.541	0.287	0.02944	0.30	19		
	0	1.461	13.62	7.541	0.287	0.06199	0.52	97		
	Н	0.754	13.60	7.177	0.279	0.05812	0.470	06		
	Η	0.754	13.60	7.177	0.279	0.05304	0.35	33		

(a) structural formula;

(b) connectivity matrix;

(c) exponent of the connectivity matrix;

(d) electron affinities (EA), ionization potentials (IP),

đ

parameters A and B, P and Q values for each of the atoms

of formic acid molecule.

Characteristics of (Q)SAR models created by GUSAR

Name			QS	AR		SAR			
		Ν	R ²	Q ²	SD	Ν	Sens	Spec	Bal.Acc.
T47D	GI50	1497	0.711	0.613	0.570	1497	0.853	0.865	0.859
	IC50	1683	0.767	0.673	0.562	1684	0.835	0.819	0.827
ZR-75-1	GI50	183	0.804	0.723	0.462	183	0.890	0.892	0.891
	IC50	113	0.784	0.719	0.673	113	0.904	0.875	0.890
MX-1	IC50	268	0.856	0.786	0.457	268	0.863	0.841	0.852
Hs-578T	GI50	—	—	—	—	466	0.825	0.826	0.826
	IC50	_	_	_	_	177	0.744	0.891	0.817
MCF7-DOX	IC50	38	0.904	0.825	0.617	38	1.000	0.963	0.981
MCF7	GI50	4953	0.640	0.581	0.749	4953	0.866	0.809	0.837
	IC50	25077	0.521	0.496	0.812	25077	0.771	0.821	0.796
Bcap37	IC50	_	—	—	_	272	1.000	0.974	0.987
MCF7R	IC50	78	0.797	0.732	0.567	78	1.000	0.909	0.955
BT-20	GI50	28	0.912	0.821	0.464	28	1.000	1.000	1.000
	IC50	_	— BCA	DD-2023	—	176	0.844	0.854	0.849

Accuracy of prediction during 5-fold cross-validation

Name		Ν	(QSAR		
			R ²	RMSE	Bal.Accuracy	
T47D	GI50	1497	0.498	0.638	0.82	
	IC50	1683	0.518	0.674	0.77	
ZR-75-1	GI50	183	0.56	0.576	0.86	
	IC50	113	0.655	0.733	0.82	
MX-1	IC50	268	0.627	0.587	0.80	
Hs-578T	GI50	466	0.357	0.702	0.76	
	IC50	177	0.046	1.336	0.76	
MCF7-DOX	IC50	38	0.557	0.954	0.92	
MCF7	GI50	4953	0.588	0.738	0.84	
	IC50	25077	0.671	0.649	0.88	
Bcap37	IC50	272	0.387	0.336	0.97	
MCF7R	IC50	78	0.672	0.625	0.98	
BT-20	GI50	28	0.641	0.612	0.85	
	IC50	176	0.287	1.122	0.77	

 MCF7 (pGI50)
 BCADD-2023
 7.7512
 in AD

 Way2Drug ©2011 - 2023 | Privacy Policy
 provided by W2D Team.

NCI ALMANAC database

Combinations

Drug

Holbeck, S.L., et al. The National Cancer Institute ALMANAC: A Comprehensive Screening Resource for the Detection of Anticancer Drug Pairs with Enhanced Therapeutic Activity. Cancer Res. 2017, 77(13), 3564-3576

Website development

Tools for users

Utilization by

Develop and test hypotheses

cancer community

Download datasets

MNA Descriptors

In F	PASS			PoSMNA (Pair of Substances MNA) in PASS DDI
MNA (N Neighbo Atoms)	/lultilevel orhoods of	⁷ O ¹³ H ₁₂ H ¹ ¹³ H ₁₂ H	Phenol as a set of MNA H° descriptors of zero, first and second levels H_{10} (MNA/0, MNA/1, MNA/2)	MNA/2 descriptors for the combination of phenelzine and tranylcypromine
atom	MNA/0	MNA/1	MNA/2	$\left[C(C(CC-H)C(CC-H)-H(C))\right] = \sum_{i=1}^{N} \left[C(C(CCC-H)C(CC-H-H)-H(C)-N(C-H-H))\right]$
1	С	C(CC-H)	C(C(CC-H)C(CC-O)-H(C))	$\frac{C(C(CC-H)C(CC-H)-C(C-H-H-C))}{C(C(CC-H)C(CC-H-N)-H(C)-H(C))}$
2	С	C(CC-H)	C(C(CC-H)C(CC-H)-H(C))	C(C(CC-H)C(CC-C)-H(C)) $C(C(CC-H)C(CC-H)C(CC-H))$
3	С	C(CC-H)	C(C(CC-H)C(CC-H)-H(C))	-C(C(CC-C)-H(-C)-H(-C)-C(-H-H-C-N)) C(C(CCC)C(CC-H-H)C(CC-H-N)-H(C))
4	С	C(CC-H)	C(C(CC-H)C(CC-H)-H(C))	$-C(-H(-C)-H(-C)-C(C-H-H-C)-N(-H-C-N)) \stackrel{!}{} \overline{C(\overline{C}(\overline{C}\overline{C}\overline{C})}\overline{C(\overline{C}\overline{C}-H)}-\overline{H}(\overline{C})) \stackrel{!}{} \overline{C(\overline{C}(\overline{C}\overline{C})}-\overline{C}(\overline{C}\overline{C}-H)}$
5	С	C(CC-H)	C(C(CC-H)C(CC-O)-H(C))	-N(-H(-N)-H(-N)-N(-H-C-N)) =
6	С	C(CC-O)	C(C(CC-H)C(CC-H)-O(C-H))	$ -N(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) _{} > -N(C(CC-H-N)-H(-N)-H(-N)) _{} > -N(C(CC-H-N)-H(-N)) _{} > -N(-H(-N)-H(-N)) _{} > -N(-H-H-N) $
7	-O	-O(C-H)	-O(C(CC-O)-H(-O))	MNA for Phenelzine MNA for Tranylovpromine
8	-H	-H(-O)	-H(-O(C-H))	Min A lor meneizine Min A lor manyicypromine
9	-H	-H(C)	-H(C(CC-H))	V
10	-H	-H(C)	-H(C(CC-H))	Combining all possible pairs of MNA descriptors of each molecule
11	-H	-H(C)	-H(C(CC-H))	
12	-H	-H(C)	-H(C(CC-H))	C(C(CC-H)C(CC-H)-H(C)) C(C(CCC-H)C(CC-H-H)-H(C)-N(C-H-H))
13	-H	-H(C)	-H(C(CC-H))	C(C(CC-H)C(CC-H)-H(C)) C(C(CCC-H)C(CC-H-N)-H(C)-H(C)) C(C(CC-H)C(CC-H)-H(C)) C(C(CCC-H)C(CC-H)C(CC-H)
Filimono Multilev	ov, D., et al vel Neighbo	l. Chemical orhoods of	l Similarity Assessment through Atoms: Definition and Comparison	$\begin{array}{c} -\overline{N}(-\overline{H}(-\overline{N})-\overline{C}(-\overline{H}-\overline{H}-\overline{C}-\overline{N})-\overline{N}(-\overline{H}-\overline{H}-\overline{N}))} \overline{C}(\overline{C}(\overline{C}\overline{C}\overline{C}\overline{C})\overline{C}(\overline{C}\overline{C}-\overline{H})-\overline{H}(\overline{C})) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N))} \overline{C}(C(CC-H)C(CC-H)-H(C)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N))} -\overline{N}(C(CC-H-N)-H(-N)-H(-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(C(CC-H-N)-H(-N))} \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(C(CC-H-N)-H(-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(C(CC-H-N)-H(-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(C(CC-H-N)-H(-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(C(CC-H-N)-H(-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) \\ -\overline{N}(-H(-N)-C(-H-H-C-N)-N(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N) -\overline{N}(-H-H-N)) -\overline{N}(-H-H-N) -$

Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descriptors. J. Chem. Inf. Comput. Sci., 1999, 39, 666-670.

Dmitriev AV et al., In Silico Prediction of Drug-Drug Interactions Mediated by Cytochrome P450 Isoforms. Pharmaceutics. 2021, 13(4):538

9

PoSMNA for the pair of Phenelzine and Tranylcypromine

Accuracy of prediction calculated by LOO CV compounds out strategy

Number of			Number of		
synergistic		- ·· ··	synergistic		
drug pairs	AUC	Activity Type	drug pairs	AUC	Activity Type
110	0.713	Breast Cancer_BT-549	126	0.803	Melanoma_MDA-MB-435
113	0.774	Breast Cancer_HS 578T	191	0.726	Melanoma_SK-MEL-5
77	0.739	CNS Cancer_SF-268	92	0.767	Melanoma_UACC-257
164	0.723	CNS Cancer_SF-539	117	0.701	Melanoma_UACC-62
99	0.750	CNS Cancer_SNB-75	81	0.741	Non-Small Cell Lung Cancer_EKVX
98	0.754	CNS Cancer_U251	78	0.741	Non-Small Cell Lung Cancer_NCI-H226
130	0.856	Colon Cancer_COLO 205	119	0.703	Non-Small Cell Lung Cancer_NCI-H23
101	0.817	Colon Cancer_HCC-2998	74	0.717	Non-Small Cell Lung Cancer_NCI-H322M
107	0.727	Colon Cancer_HCT-116	131	0.763	Non-Small Cell Lung Cancer_NCI-H522
84	0.826	Colon Cancer_HCT-15	58	0.711	Ovarian Cancer_IGROV1
108	0.781	Colon Cancer_HT29	126	0.800	Ovarian Cancer_OVCAR-3
73	0.768	Colon Cancer_KM12	70	0.708	Ovarian Cancer_OVCAR-5
91	0.747	Colon Cancer_SW-620	118	0.737	Ovarian Cancer_OVCAR-8
165	0.799	Leukemia_K-562	142	0.731	Prostate Cancer_DU-145
288	0.735	Leukemia_RPMI-8226	65	0.814	Prostate Cancer_PC-3
107	0.760	Melanoma_LOX IMVI	129	0.737	Renal Cancer_RXF 393
105	0.757		B 745 0-2023	0.713	Renal Cancer_UO-31 24

10

CLC-Pred synergy: http://www.way2drug.com/clc-pred-syn/

Way2Drug Home Activities About Contacts

CLC-Pred Synergy – Prediction of synergistic cytotoxicity of drug pairs on 34 NCI60 cell lines. The user guide can be found in the section "About".

Сору	Copy Excel CSV PDF Print								
Pa 🗸	Pi 🕴	Cell-line synergy	Tissue of origin 👙	Histology	♦ AUC LOO CV* ♦				
0.744	0.026	HS_578T	Breast	Carcinosarcoma	0.774				
0.406	0.303	H322M	Lung	Carcinoma	0.717				
0.355	0.126	MDA-MB-435	Breast	Melanoma	0.803				
Pa	Pi	Cell-line synergy	Tissue of origin	Histology	AUC LOO CV*				
Show 1	0 🗸 e	ntries							

Showing 1 to 3 of 3 entries

Previous 1 Next

AUC LOO CV* - the accuracy of prediction (AUC) calculated by leave-one-out compound out (excluded all drug pairs with any drug from the pair) cross validation.

Acknowledgments

Laboratory of structure-function drug design, Institute of Biomedical Chemistry:

A.Rudik, P. Pogodin, P. Savosina, O. Tarasova, A. Dmitriev, S. Ivanov, N. Biziukova, D. Druzhilovskiy, D. Filimonov, V. Poroikov

Bioinformatics department, Pirogov Russian National Research Medical University:

A. Dublin, A. Sezganov

Russian Science Foundation:

Grant 19-15-00396, https://rscf.ru/project/19-15-00396/