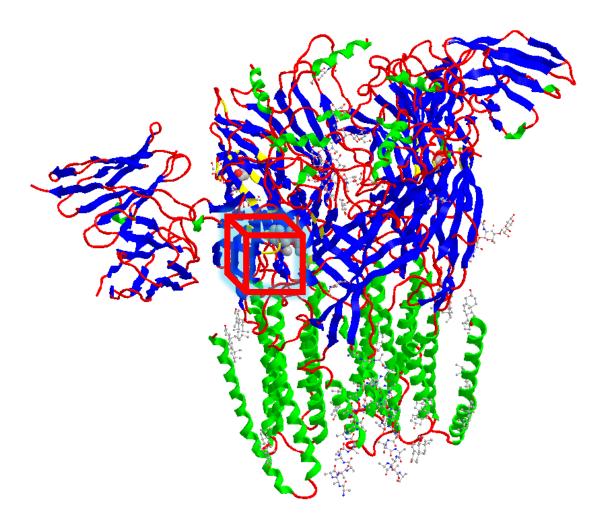
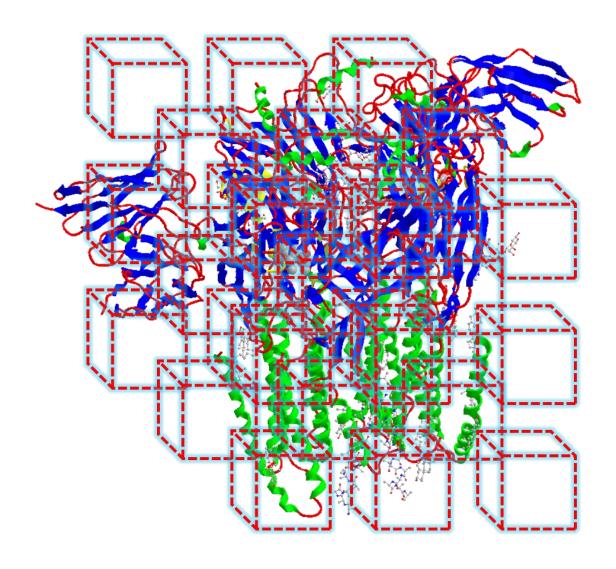
Volgograd State Medical University, Volgograd, Russia Department of Pharmacology and Bioinformatics Research Center for Innovative Medicines

SEARCH FOR NEW ANXIOLYTIC SUBSTANCES BY NEURAL NETWORK MODELING USING MULTIPLE DOCKING

M.A. Perfilev, P.M. Vassiliev, A.N. Kochetkov


The aim of the study

To provide high efficiency of drug discovery using neural network modeling based on multiple docking methodology.


Tasks

- 1. Perform multiple docking of new quinazoline-2,4(1*H*,3*H*)-dione derivatives.
- 2. Predict the activity level of new compounds using a previously built neural network model.
- 3. Conduct an experiment in behavioral tests to confirm the prediction.
- 4. Prepare new compounds for future research.

Simple docking

Multiple docking

Comparison of simple and multiple docking

Prediction accuracy indicator	Value for model using			
Trediction accuracy indicator	ΔΕο	ΔE ₁ ΔE ₂₇		
F ₀ , %	51,3	94,8		
Fa, %	66,7	83,3		
Fn, %	49,1	96,4		
Z ₀	0,58	8,73		
Za	1,08	2,23		
Zn	0,14	8,45		
po	0,281	<1·10 ⁻¹⁵		
p _a	0,139 0,0127			
p _n	0,555	<1.10-15		

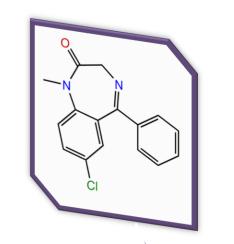
Примечание.

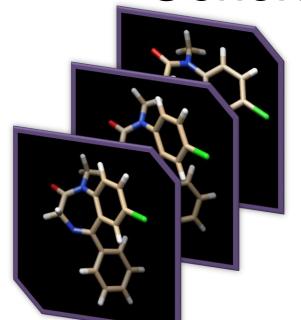
 F_0 , F_a , F_n – overall predictive accuracy, sensitivity, specificity

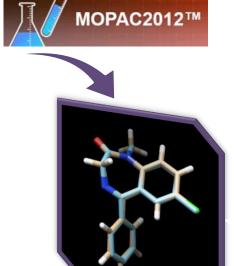
Zo, Za, Zn - binomial test for Fo, Fa, Fn.

 p_0 , p_a , p_n – significance F_0 , F_a , F_n .

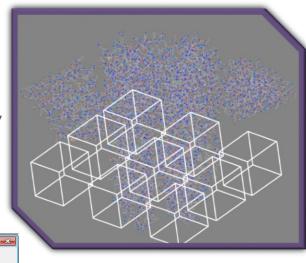
Databases and software

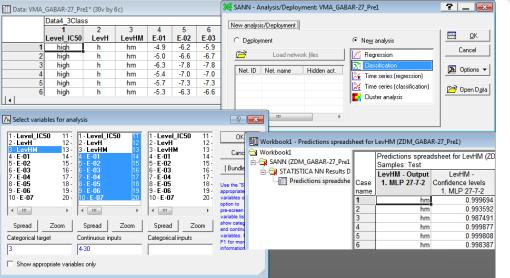






MarvinSketch





Results

	Predictions spreadsheet for LevHM (VMA_GABAR-27_Pre1)								
	Samples: Test								
	LevHM	LevHM - Output	LevHM - Residuals	LevHM -					
Case	Target	1. MLP 27-7-2	1. MLP 27-7-2	Confidence levels					
name				1. MLP 27-7-2					
1	hm	nhm	Incorrect	0.978494					
2	hm	nhm	Incorrect	0.845162					
3	hm	hm	Correct	0.997323					
4	hm	nhm	Incorrect	0.999198					
5	hm	nhm	Incorrect	0.994857					
6	hm	hm	Correct	0.999218					

Compound	Level of activity	Membership function F_m	
1	nhm	0.978	
2	nhm	0.999	
3	nhm	0.995	
4	nhm	0.845	
5	hm	0.997	
Diazepam	hm	0.999	

^{*} hm is the high or moderate level of activity; nhm is the low level of activity or its absence; the data for compounds assigned by the prediction to the class of compounds with pronounced activity are highlighted in bold.

Compound	Latent period	Line crossings	Rearing	Center square entries	Center square duration	Indicator of priming action
1	103±34	-26±25	0±0	-11±40	-25±4	0
2	-80 ± 6^{b}	34 ± 20	50 ± 120^{b}	-22 ± 0	-89 ± 0	2
3	135±31	28 ± 34	0 ± 0	89 ± 102^{c}	197 ± 22^{b}	3
4	-74 ± 5	70 ± 21^{b}	250±582c	111 ± 162^{d}	-41 ± 24^{b}	4
5	-75 ± 10	101 ± 30^{b}	217±465c	200 ± 242^d	9 ± 29^{b}	7
Diazepam	-97 ± 0^{d}	135 ± 42^{d}	0 ± 0	167 ± 194^{c}	13 ± 31^{b}	9

^a The values of the indicators are given in percent to the control. The indicators for compounds with very pronounced priming activity are highlighted in bold. Significance of changes according to the Mann—Whitney U-test:

^b very weak, $0.1 \le p < 0.2$;

 $[^]c$ weak, statistically insignificant, 0.05 ≤ p < 0.1;

^d statistically significant, $0.01 \le p < 0.05$.

Results

- 1. We have performed ensemble multiple docking of new acetamide derivatives of quinazolines.
- We have performed an activity level prediction of new compounds based on a new methodology with consensus ensemble neural network classification model.
- 3. We tested these compounds in an experiment.
- 4. We have shown that the developed methodology is effective and can be used for other types of activities.

Thank you for listening