

XXIX Symposium on Bioinformatics and Computer-Aided Drug Discovery 18-20 September 2023, on-line

Machine Learning Prediction of Mycobacterial Cell Wall Permeability of Drugs and Drug-like Compounds

E.V. Radchenko^{1,2}, G.V. Antonyan¹, S.K. Ignatov², V.A. Palyulin^{1,2}

¹ Lomonosov Moscow State University, Russia ² Lobachevsky State University of Nizhny Novgorod, Russia

genie@qsar.chem.msu.ru

Drug-resistant tuberculosis (TB), a major global health challenge

- TB is caused by the pathogenic *Mycobacterium tuberculosis (Mtb)*
- One of the most widespread and socially significant infections
- Every year, 1.6 million people die worldwide, making TB the leading cause of death from a single infectious agent
- New emerging strains of mycobacteria: multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis

HIV-associated TB

Severely lacking tuberculosis therapy options

- About a dozen antibiotic agents belonging to several drug classes are used clinically
- Often limited efficacy, long and inconvenient regimens, combination therapies
- Often toxicity and other adverse effects
- High risk of preexisting or developing drug resistance
- Massive worldwide efforts to identify novel promising anti-TB drug targets and active compounds
- Target-oriented drug development and optimization often unsuccessful
- High attrition rates
- Many compounds are potent against isolated targets but lack activity in whole-cell or *in vivo* settings
- One of the key causes: low penetration of a drug into *Mtb* cells

Key factor of *Mtb* resilience is its extremely complicated and persistent cell wall

Thick and dense outer membrane of mycolic acids: long molecules with hydrocarbon chains of ~70-90 carbon atoms

Also contains various porins, efflux pumps, and transporters

"Normal"

lipid membrane

Figure from [Dulberger C.L.et al. Nat Rev Microbiol, 2020, 18, 47]

Prediction and optimization of *Mtb* "pharmacokinetics"

- Explicit modeling of drug permeation promising but complicated
- Effective complementary approach: use general QSAR methodology to derive predictive machine learning models
- Key challenge: lack of direct measurements of permeability
- Solution: indirect estimation from comparison of the target and whole-cell activities [originally proposed for the MycPermCheck model, *Merget et al., Bioinformatics 2013, 29, 62–68*]
- Implicitly captures not only membrane permeation but also active transport/efflux and inactivation

Mtb permeability datasets based on Big Data analysis

• Extensive anti-TB bioassay data are available in PubChem 2022

AID 1	ID	Type	Activity / Compound Count ²	Description	Activity condition						
						375	T01	Target	10011 /	Mycobacterium tuberculosis pantothenate synthetase assay	Outcome
									10009		
1376	T02	Target	216162 /	Inhibitors of mycobacterial glucosamine-1-phosphate acetyl transferase	Outcome						
			215860	(GlmU)							
2606	T03	Target	324858 /	Primary biochemical high throughput screening assay to identify inhibitors	Outcome						
			324747	of the membrane-associated serine protease Rv3671c in M. tuberculosis							
504406	T04	Target	324148 /	High throughput screening of inhibitors of Mycobacterium tuberculosis UDP-	Outcome						
			324048	galactopyranose mutase (UGM) enzyme							
540299	T05	Target	103205 /	A screen for compounds that inhibit the MenB enzyme of Mycobacterium	Outcome						
			102628	tuberculosis							
588335	T06	Target	356407 /	Counterscreen for inhibitors of the fructose-bisphosphate aldolase (FBA) of	Outcome						
			356160	M. tuberculosis							
602481	T07	Target	356486 /	Mycobacterium tuberculosis BioA enzyme inhibitor	Outcome						
			353572								
1159583	T08	Target	301203 /	High throughput screen for small molecule inhibitors of a hypoxia-	Outcome						
			300060	regulated fluorescent biosensor in Mycobacterium tuberculosis							
1671160	T09	Target	8874 /	Assay for Asp RNA synthetase-1 from Mycobacterium tuberculosis	Inh30						
			8841								
1671178	T10	Target	67199 /	Mycobacterium tuberculosis polyketide synthase 13 thioesterase (PKS13)	Inh30						
			66591								
2221	T11	Target	293466 /	Cell-free homogenous primary high throughput screen to identify	Outcome						
			293376	inhibitors of RecA intein splicing activity							

Target-based assays

Total 926,660 compounds 9450 compounds active in at least one assay

Cell-based assays

Total 557,527 compounds 1259 96,040 compounds active in at least one assay 1259

			Activity /		A
AID ¹	ID	Type	Compound	Description	Activity
			Count ²		condition ⁹
1332	C01	Cell	1118	High throughput screen to identify inhibitors of Mycobacterium tuberculosis	Inh30
				H37Rv	
1626	C02	Cell	215397	High throughput screen to identify inhibitors of Mycobacterium tuberculosis	Inh30
				H37Rv	
1949	C03	Cell	100697	High throughput screen of 100,000 compound library to identify inhibitors	Inh30
				of Mycobacterium tuberculosis H37Rv	
2842	C04	Cell	23823	High throughput screen of a putative kinase compound library to identify	Inh30
				inhibitors of Mycobacterium tuberculosis H37Rv	
449762	C05	Cell	327669	High throughput screening assay used to identify novel compounds that	Inh30
				inhibit Mycobacterium tuberculosis in 7H9 media	
1259343	C06	Cell	6225	High throughput screening of small molecules that kill Mycobacterium	Inh30
				tuberculosis	
1259417	C07	Cell	1105	High throughput whole cell screen to identify inhibitors of <i>Mycobacterium</i>	Inh30
				tuberculosis	
1671161	C08	Cell	96022 /	Phenotypic growth assay for <i>Mycobacterium tuberculosis</i> grown for 4 days	Inh30
	-	~ "	86588	on DPPC, cholesterol, tyloxapol based media	
1671162	C09	Cell	103984 /	Phenotypic growth assay for <i>Mycobacterium tuberculosis</i> grown for 3 days	Inh30
	610	C 11	86574	on 7H9, glucose tyloxapol based media	1.1.00
1671174	C10	Cell	531717	Phenotypic assay to identify agents that inhibit growth of <i>Mycobacterium</i>	Inh30
100000	014	C 11	53165	tuberculosis	1.1.00
488890	CII	Cell	324545	Elucidation of physiology of non-replicating, drug-tolerant Mycobacterium	Inh30
				tuberculosis	

Mtb permeability datasets based on Big Data analysis

- Intersection of target-active and cell-tested compounds: 8242 compounds
- Compounds active in at least one cell-based assay are classified as penetrating (*MtbPen* = 1), otherwise as non-penetrating (*MtbPen* = 0)

Full dataset MtbPen8242

8242 compounds2671 penetrating5571 non-penetratingModerately imbalanced data

Balanced dataset MtbPen5371ad

5371 compounds 2671 penetrating 2700 diverse non-penetrating

QSAR modeling: fragmental (substructural) molecular descriptors

- Occurrence counts (or presence) of fragments
- Thousands of fragments for real datasets
- "Holographic portrait" of a molecule
- Applicable to diverse series of compounds
- Easy prediction for new compounds
- Simple structural interpretation
- Mutual arrangement of structural features is handled indirectly via larger and/or overlapping fragments
- Acceptable for non-specific properties and/or diverse datasets

Up to 8 non-hydrogen atoms Fragments present at least in 100 compounds

Hierarchical atom type classification

Machine learning modeling approach

- Similar to ADMET modeling workflow
- Fragmental descriptors
- (Deep) feed-forward back-propagation neural network (BPNN)
- Repeated randomized double cross-validation (5x4 fold) to prevent overfitting and chance correlations
- Ensemble prediction

Perform endpoint scaling Perform descriptor scaling

Perform descriptor selection

Repeat NR times

Split dataset into No subsets

For each of *No* subsets

Outer loop: use current subset for validation, other subsets for training

Split outer loop training dataset into N1 subsets

For each of *N*¹ subsets

Inner loop: use current subset for termination, other subsets for training

Build individual neural network model using other subsets for training and current subset for termination

Evaluate model on the outer loop validation subset, collect statistics

Save individual submodel

Consolidate validation errors, compute final statistics

Save complete ensemble model

Parallelized double cross-validation

- Neural network "forest" model
- TensorFlow 2.4.1/Keras 2.4.3
- High-performance NVIDIA RTX3080Ti GPU
- Hyperparameter optimization: fragment size, descriptor count, number and sizes of DNN layers, dropout

Predictive *Mtb* permeability models

Full dataset MtbPen8242

500 fragmental descriptors up to 6 atoms 2 hidden layers Acc_{cv} = 0.752

 $BalAcc_{cv} = 0.683$

 $Sens_{cv} = 0.486$

 $Spec_{cv} = 0.880$

Low recognition of penetrating compounds, likely due to imbalance in favor of non-penetrating

Balanced dataset MtbPen5371ad

900 fragmental descriptors up to 6 atoms 2 hidden layers $Acc_{cv} = 0.768$ $BalAcc_{cv} = 0.768$ $Sens_{cv} = 0.768$ $Spec_{cv} = 0.769$

Model can be used to screen or design likely penetrating compounds

Radchenko E.V., Antonyan G.V., Ignatov S.K., Palyulin V.A. Molecules, 2023, 28, 633

Acknowledgments

Laboratory of chemoinformatics and molecular modeling Lobachevsky State University of Nizhny Novgorod

Strategic Academic Leadership Program "Priority 2030"