

Prediction of toxicity endpoints as a pathway towards minimising risks in drug development

Conference participant: Dmitrii Shkil, MSc, Syntelly LLC

Scientific problems in drug discovery

CHEMICAL SPACE IS ENORMOUS

The scientific world is now aware of about 300 million chemical compounds and their number is constantly growing.

Potential amount of chemical space estimated at 10⁶⁰ molecules.

It is extremely difficult to manually search for chemical structures that have the necessary physicochemical or biological properties in such a huge array.

SynMap – example of chemical space map

Scientific problems in drug discovery

COST OF TOXICITY INFORMATION FOR MOLECULES

In the global pharmaceutical market, the process from lead identification to clinical trials takes more than 12 years and costs approximately \$1.8 billion USD on average.

The need for research on toxicological properties is one of the main expenses of drug life cycle. Experiments use a large number of laboratory animals and can last for several years.

The limitations of *in vivo* and *in vitro* approaches to characterize chemical compounds have contributed to the development of *in silico* approaches.

From drug discovery to the market campaign

Scientific problems in drug discovery

NARROW APPLICABILITY DOMAIN OF EXISTING MODELS

Although more than 300 million compounds are currently known, toxicity has only been studied for no more than approximately 300,000 compounds for all endpoints.

For the most part of studied compounds, molecular toxicity data are not aggregated, standardized, and well-curated.

Most of QSAR (quantitative structure-activity relationship) models have only **20-1000** samples in their training set, limiting its application for explored and unexplored chemical space.

SYNTELLY

Computational toxicology

Hackathon

FROM THE STRUCTURE TO PREDICT TOXICITY ENDPOINTS

In Syntelly, we decided to organize the hackathon which was dedicated to the toxicity problem.

The task was as follows: based on open data, collect your own original dataset and build a machine learning model based on it to predict the toxicity of chemical compounds.

This was a non-standard hackathon, as it developed its own evaluation criteria and at the same time manual verification was carried out. Unlike competitions like Kaggle, our competition required attention not only to the models, but also to the data being collected, because without good quality data it is difficult to get a good model.

Solutions from the hackathon

CATBOOST ON MORGAN ECFP or/and MACCS KEYS AND DESCRIPTORS

Name of target	Billy QSAR	Smi2Vec-LSTM	Smi2Vec- BiGRU	TranGRU
NR.AhR	0.904	0.678	0.879	0.833
NR.AR	0.771	0.691	0.714	0.824
NR.AR.LBD	0.747	0.748	0.824	0.847
NR.Aromatase	0.802	0.496	0.699	0.784
NR.ER	0.787	0.623	0.736	0.691
NR.ER.LBD	0.763	0.531	0.868	0.843
NR.PPAR.gamma	0.767	0.566	0.749	0.838
SR.ARE	0.795	0.641	0.761	0.701
SR.ATAD5	0.806	0.5	0.763	0.727
SR.HSE	0.796	0.612	0.785	0.736
SR.MMP	0.951	0.743	0.86	0.816
SR.p53	0.818	0.518	0.732	0.81

ROC AUC avg. values on 5-CV for Tox21 dataset

Name of target	MML	Syntelly	
Mouse Oral LD ₅₀	0.43	0.49	
Rat Oral LD ₅₀	0.47	0.68	
Mouse Intraperitoneal LD ₅₀	0.45	0.54	
Rat Intraperitoneal LD ₅₀	0.58	0.63	
Mouse Intravenous LD ₅₀	0.46	0.52	
Rat Intravenous LD ₅₀	0.59	0.63	

RMSE values for regression task

Examples of chemical fingerprints

Our solution

Target name	CatBoost FPs	XGBoost Fragments	Benchmark	N samples
Cardiotoxicity (hERG binary)	0.888	0.926	0.930 (CardioTox)	324010
Ames test	0.845	0.894	0.88 (Syntelly)	14168
SR-HSE	0.839	0.836	0.736 (TranGRU)	7281
NR-AR	0.724	0.797	0.824 (TranGRU)	7263
NR-AR-LBD	0.843	0.835	0.847 (TranGRU)	7133
NR-PPAR-gamma	0.727	0.809	0.838 (TranGRU)	6942
NR-Aromatase	0.831	0.875	0.784 (TranGRU)	6929
NR-ER-LBD	0.858	0.878	0.843 (TranGRU)	6920
SR-ATAD5	0.75	0.862	0.727 (TranGRU)	6893
SR-ARE	0.825	0.845	0.701 (TranGRU)	6822
SR-p53	0.748	0.877	0.81 (TranGRU)	6749
NR-ER	0.852	0.866	0.691 (TranGRU)	6585
NR-AhR	0.816	0.871	0.833 (TranGRU)	6446
SR-MMP	0.853	0.896	0.816 (TranGRU)	6361

ROC AUC avg. values on 5-CV for datasets from the hackathon for binary classification task

Our solution

Target name	CatBoost FPs	XGBoost Fragments	Benchmark	N samples
Mouse Intraperitoneal LD ₅₀	0.562	0.486	0.54 (Syntelly)	91162
Mouse Oral LD ₅₀	0.543	0.445	0.49(Syntelly)	57307
Mouse Intravenous LD ₅₀	0.498	0.415	0.59 (Syntelly)	41630
Rat Oral LD₅₀	0.589	0.466	0.68 (Syntelly)	23409
Mouse Subcutaneous LD ₅₀	0.696	0.652	0.55 (Syntelly)	19457
Rat Intraperitoneal LD ₅₀	0.71	0.618	0.63 (Syntelly)	12769
Rat Subcutaneous LD ₅₀	0.829	0.743	0.69 (Syntelly)	5376
Tetrahymena pyriformis IGC ₅₀ 40 h	0.524	0.46	0.518 (TOXRIC)	3516
Mouse Intraperitoneal LD _{Lo}	0.495	0.435	0.52 (Syntelly)	3500
Rabbit Skin LD ₅₀	0.521	0.479	0.58 (Syntelly)	3429
Rabbit Oral LD ₅₀	0.626	0.588	0.588 (Syntelly)	2969
Guinea Pig Oral LD₅₀	0.703	0.659	0.69 (Syntelly)	1778
Fathead Minnow LC ₅₀ 96 h	0.78	0.72	0.864 (TOXRIC)	1739
Rat Skin LD ₅₀	0.665	0.63	0.62 (Syntelly)	1673
Rat Intraperitoneal LD _{Lo}	0.512	0.482	0.63 (Syntelly)	1568

RMSE avg. values on 5-CV for datasets from the hackathon for regression task

Final part of the work

INCREASE OF EXPERIMENTAL DATA IS THE KEY TO HIGH PERFORMANCE

We hypothesized that data quantity is a significant factor in the quality of QSAR models. On the one hand, this statement is almost axiomatic within the framework of machine learning - the more data, the better quality can be achieved. On the other hand, this issue has not been widely addressed within machine learning in chemistry.

We built a linear regression model of the dependence of RMSE on the number of samples in the datasets and saw that there is a significant relationship between these variables. It is worth noting that the datasets are aggregated and the trend is observed at the level of all toxicity regression endpoints. Thus, we believe that we would like to inspire experimenters to obtain more experimental data with high statistical reliability of the data.

Thank you for attention!

If you want a token, please write to admin@syntelly.com