Gating and molecular pharmacology of TRP Channels

Alexander Sobolevsky

Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center

TRP channels

https://rxisk.org/ion-channels/

TRP channels

TRPV5 (ECaC) and TRPV6 (CaT1) are Ca²⁺ entry channels in epithelial cells

Peng et al J. Biol. Chem. 1999

TRPV5 cloned from rabbit kidney cDNA

Hoenderop et al J. Biol. Chem. 1999

TRPV5/6 KO mice:

- Defective intestinal Ca²⁺ absorption
- Increased urinary Ca²⁺ excretion
- Decreased femoral bone mineral density
- Lower body weight
- Impaired fertility
- Alopecia and dermatitis

Expression changes (mouse models):

- Pendred syndrome
- Crohn's-like disease
- Lowe syndrome
- Dent disease
- Gitelman syndrome
- Kidney stone disease

TRPV6 in Health

Expressed in:

- Duodenum
- Pancreas
- Prostate
- Placenta
- Salivary gland
- Liver
- Stomach
- Kidney
- Testis
- Bone
- Parathyroid glands
- Blood cells

Overexpressed in human cancers:

- Breast
- Prostate
- Colon
- Ovarian
- Thyroid
- Endometrial
- Leukemia

Lehen'kyi et al, J. Physiol. 2012

Overexpression pattern correlates with the aggressiveness of the disease !

Crystallization and structure solution

Data Collection	
Beamline	APS-24ID-C
Space group	P42 ₁ 2
Cell dimensions: a, b, c,	143.81, 143.81, 113.22
(Å)	
α, β, γ (°)	90 90 90
Wavelength (Å)	0.9791
Resolution (Å)*	44.48 - 3.25 (3.36 - 3.25)
Completeness (%)*	96.0 (94.7)
Redundancy*	8.7 (9.2)
Ι /σ *	16.9 (1.3)
R _{meas} (%)*	9.8 (132.6)
CC _{1/2}	99.8 (85.7)
Structure solution	
Method	Molecular Replacement
Search probe	TRPV6 ARD (2RFA)
Refinement	
Resolution (Å)*	44.48 - 3.25 (3.36 - 3.25)
Completeness (%)	96 (93.8)
Number of reflections	18531 (1724)
R _{work} /R _{free}	0.273/0.287
Number of atoms: Total	4747
Ligand	16
B-factor (Å ²)	
Protein	120.5
Ligand	77.27
RMS deviations	
Bond length (Å)	0.003
Bond angles (º)	0.7
Ramachandran	
Favored (%)	94.6
Allowed (%)	5.4
Disallowed (%)	0.0

*Highest resolution shell in parentheses 5% reflections were used for calculation of $R_{\rm free}$

Saotome et al. Nature 2016

Rat TRPV6 structure

Saotome et al. Nature 2016

Cryo-EM structure of human TRPV6

Open ion channel pore

Lipids in human TRPV6 structure

McGoldrick et al. Nature 2017

TRPV6 gating mechanism

Ca²⁺-induced inactivation

Effect of Ca²⁺-insensitive CaM (CaM1234) on TRPV5 and TRPV6 Ca²⁺ current kinetics

Lambers et al. J. Biol. Chem. 2004; Saotome et al. Nature 2016; McGoldrick et al. Nature 2018

Cryo-EM structures of CaM-bound TRPV6

Architecture of TRPV6-CaM complex

Singh et al. Science Advances 2018

Inactivated TRPV6 pore

Mechanism of TRPV6 inactivation

Inhibition of TRPV6 by PCHPDs

(4-phenylcyclohexyl) piperazine derivatives

Inhibition of TRPV6 by (4-phenylcyclohexyl) piperazine derivatives (PCHPDs)

Bhardwaj et al. Science Advances 2020

Functional analysis of the PCHPD pore binding site

Comparison of TRPV6 structures inhibited by cis-22a and inactivated by CaM

Pore in TRPV6 structure inhibited by cis-22a compared to other states

Bhardwaj et al. Science Advances 2020

Mechanism of TRPV6 inhibition by PCHPDs

Bhardwaj et al. Science Advances 2020

Ruthenium Red

The inorganic dye ammoniated ruthenium oxychloride, also known as ruthenium red, is used in histology to stain aldehyde fixed mucopolysaccharides. Inhibitor of different ion channels.

Econazole

Econazole is used as a cream to treat infections caused by a fungus or yeast, such as athlete's foot, tinea, pityriasis versicolor, ringworm, and jock itch.

TRPV6 in complex with Ruthenium Red and Econazole

Binding site of RR in the channel pore

Allosteric binding site of econazole

Ion channel pore

Mechanism of TRPV6 inhibition by RR and econazole

Genistein is a **polyphenolic isoflavone** that belongs to the flavonoid group and is commonly found in various dietary vegetables, such as **soy beans** and fava beans. Epidemiological studies have shown that the intake of dietary-rich isoflavones **reduces the risk of various human cancers**.

Cryo-EM of hTRPV6 in the presence of genistein

Structures of hTRPV6 in the presence of genistein

Structures of hTRPV6 in the presence of genistein

Genistein binding sites

Binding sites of metal ions

MD simulations of genistein binding sites

Mechanism of TRPV6 inhibition by genistein

Inhibition of TRPV6 by tetrahydrocannabivarin (THCV)

THCV

- Natural cannabinoid from Cannabis sativa
- Non-psychoactive, compared to CBD and THC
- Neuroprotective activity
- Appetite suppression
- Glycemic control
- Potential treatment for obesity and diabetes
- Anti-cancer properties

Structure of TRPV6_{THCV} and THCV binding sites

MD simulation of THCV binding to TRPV6

Roman Efremov Yuri Trofimov Nikolay Krylov

$TRPV6_{THCV}$ pore

Conformational changes and mechanism of THCV inhibition

Binding sites in TRPV6

Arthur

Kei Saotome

Research Scientist Regeneron Pharm.

Appu

Singh

Assistant Professor IIT Kanpur

Luke

McGoldrick

Research Scientist Regeneron Pharm.

Department of Biochemistry and Molecular Biophysics Columbia University Medical Center

Collaborators

Roman Efremov Yury Trofimov

Nikolay Krylov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry

Maria Kurnikova Serzhan Sakipov

> Carnegie Mellon Universitv

Christoph Romanin Sonja Lindinger Isabella Derler

> Institute of Biophysics Johannes Kepler University, Linz

Matthias Hediger Rajesh Bhardwaj Gergely Gyimesi University of Bern

Jean-Louis Reymond Micael Cunha University of Bern

CUIMC **Cryo-EM Facility**

Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute

PACIFIC NORTHWEST

Thank you!