

Evaluation of selected indigenous spices and herbs derived small molecules as potential inhibitors of SREBP1 and its implications for breast cancer using MD simulations and MMPBSA calculations

Urvashi Tiwari Ph.D. Scholar Department of Biosciences Integral University Lucknow

Introduction

- ➤In breast cancer cells, there is often an increased demand for lipids to support rapid cell growth and proliferation.
- A Sterol regulatory element-binding protein 1 (SREBP1) is a transcription factor that plays a crucial role in regulating lipid and cholesterol metabolism in the body.
- SREBPs works as a mediator in transferring signals from oncogenic pathways to the activation of lipid synthesis and uptake.
- ➢High levels of SREBP1 can lead to the upregulation of genes involved in lipid biosynthesis and may contribute to the increased lipid synthesis seen in breast cancer cells.

SELECTION OF SREBP1 ISOFORM AS A TARGET

• SREBP-1a : activator of all SREBP-responsive genes

SREBP-2:activates cholesterol synthesis

- SREBP-1c : controlling the genes involved in lipogenesis
- SREBP-1 is linked to lymph node metastasis, tumor-node metastasis, and tumour differentiation.
- ➤Lipid metabolism has been identified as being essential for tumor formation and progression. Indeed, multiple studies demonstrated that the lipid metabolism alteration shown in cell migration, invasion, and angiogenesis.

- ➤About 1/3 of cancer cases can be prevented by Spices and Herbs.
- Thwart cancer-promoting factors, promote cell repair, and initiate cancer cell death.
- Exhibit strong anti-cancer and antimutagenic effects.
- ➤They can modify non-coding RNAs and Upregulate tumor suppressive miRNAs.
- ➢Inhibit uncontrolled growth of cancer cells through miRNA regulation.
- ➢Natural compound chemical structures can be adjusted and improve solubility, metabolic processing, and absorption

Selected most common Indian spices & herbs

S. No.	Spice and herbs	Scientific name	References		
1	Turmeric	Curcuma longa	Dosoky NS et al.,2018		
2	True Cardamom	Elettaria cardamomum Noumi E, Snoussi M, Alreshid			
3	Black cardamom	Amomum subulatum	Shailja Choudhary et al.,2020		
4	Clove	Syzygium aromaticum	Nassar, Mahmoud et al.,2007		
5	Cinnamon	Cinnamomum cassia	Abdelwahab, Siddig et al.,2014		
6	Black pepper	Piper nigrum	Nikolić M, Stojković D, Glamočlija J, et al.		
7	Cumin	Cuminum cyminum	Patil, Dr. Sahadeo et al.,2016		
8	Fennel flower	Nigella sativa	Srinivasan, Krishnapura.,2018		
9	Nutmeg and Mace	Myristica fragrans	R, G. et al.,2018		
10	Fenugreek	Trigonella foenum-graecum	Syed, Qamar Abbas et al.,2020		
11	Black mustard	Brassica nigra	Anubhuti Sharma and PK Rai.,2018		
12	Coriander	Coriandrum sativum	Chahal, Khushminder et al.,2017		
13	Onion	Allium cepa	Fredotović, Ž. et al.,2020		
14	Garlic	Allium sativum	El-Saber Batiha et al.,2020		
15	Holy Basil	Ocimum tenuiflorum	Mao QQ et al.,2019		
16	Ginger	Zingiber officinale	Wakchaure, Rajesh & Ganguly, Subha. (2018)		
17	Saffron	Crocus sativus	Zhang, Z. et al.,2013		
18	Sweet And chili pepper	Capsicum annuum	Bal S et al.,2022		
19	Indian bay leaf	Cinnamomum tamala	Kumar, Suresh et al.,2012		
20	Star Anise	Illicium verum	Sharafan M et al.,2022		

Figure 1:Flow chart of methodology

Drug likeness & ADMET Screening

- Out of 253 compounds, 197 passed the bioavailability filter, indicating they are likely to be suitable for use in drug development.
- 82 compounds were eliminated during ADMET screening due to potential issues related to absorption, distribution, metabolism, excretion, toxicity.

Top Filtered compounds

S. No.	Compounds	Spices and Herbs		
1	Curcumenol	Turmeric		
2	1,8-cineole	Cardamom		
3	Eugenol	Clove		
4	Cinnamaldehyde	Cinnamon		
5	Piperine	Black pepper		
6	Cuminaldehyde	Cumin		
7	Thymoquinone	Fennel flower		
8	Safrole	Nutmeg		
9	Diosgenin,Smilagenin	Fenugreek		
10	Allyl isothiocyanate	Mustard seed		
11	linalool	Coriander		
12	Diallyl disulfide	Onion		
13	Allixin	Garlic		
14	Gingerdiol	Ginger		
15	Capsaicin	Chillies		
16	Pivalic acid	Bayleaf		
17	Anethole	Star Anise		

Molecular docking (MD)

- DockThor and Autodock 4.2.6 were used.
- Diosgenin (ADT ΔG : -6.57 kcal/mol, DockThor ΔG : -8.27 kcal/mol) and Smilagenin (ADT ΔG : -6.46 kcal/mol, DockThor ΔG : -8.29 kcal/mol) emerged as top-performing compounds. While betulin (ADT ΔG : -4.27 kcal/mol, DockThor ΔG : -8.27 kcal/mol)
- Findings highlight Diosgenin and Smilagenin as premium molecules for efficient interaction with SREBP1a chain.

Figure-2. SREBP1a–Betulin complex. A) A 3D image of betulin (green stick) linked to SREBP1a. B) A 2D representation of the betulin residues that bind to SREBP1a. The bond type is color-coded on the inner annotation. The number shows the location within the chain, while the capital letters identify the chain to which the residue belongs.

Α

 $\Delta G = -8.27 \text{ kcal/mol}$

Figure 3. SREBP1a–Diosgenin complex. A) A 3D image of diosgenin (green stick) linked to SREBP1a. B) A 2D representation of the diosgenin residues that bind to SREBP1a. The bond type is color-coded on the inner annotation. The number shows the location within the chain, while the capital letters identify the chain to which the residue belongs.

Figure 4. SREBP1a–Smilagenin complex. A) A 3D image of smilagenin (green stick) linked to SREBP1a. B) A 2D representation of the smilagenin residues that bind to SREBP1a. The bond type is color-coded on the inner annotation. The number shows the location within the chain, while the capital letters identify the chain to which the residue belongs.

MD simulation

- The stability assessment was conducted through Molecular Dynamics Simulations (MDS) with a substantial duration of 100 nanoseconds.
- Simulations provided valuable insights into the long-term stability and behavior of these complexes, shedding light on their potential as promising candidates for further study.

RMSD & RMSF

Figure 5: A) RMSD plot as a function of time. magenta, orange, and violet colors represent values obtained for betulin-SREBP1a, diosgenin-SREBP1a, and smilagenin-SREBP1a complexes respectively. B) RMSF plot as a function of time. magenta, orange, and violet colors represent values obtained for betulin-SREBP1a, diosgenin-SREBP1a, and smilagenin-SREBP1a complexes respectively.

SASA & AGsolv

Figure 6: A) SASA plot as a function of time. magenta, orange, and violet colors represent values obtained for betulin-SREBP1a, diosgenin-SREBP1a, and smilagenin-SREBP1a complexes respectively. B) Δ Gsolv plot as a function of time. magenta, orange, and violet colors represent values obtained for betulin-SREBP1a, diosgenin-SREBP1a, and smilagenin-SREBP1a complexes respectively.

Rg plot

Figure 6: Rg plot as a function of time. Magenta, orange, and violet colors represent values obtained for betulin-SREBP1a, diosgenin-SREBP1a and smilagenin-SREBP1a complexes respectively.

MMPBSA calculations

Polar solvation energy (kJ/mol)				Vacuum MM energy (kJ/mol)		Average binding energy (kJ/mol)			
Complexes	Protein PB energy	LIG PB energy	Protein-LIG PB energy	Protein-LIG VdW energy	Protein-LIG Elec. energy	Protein-LIG total energy	van der Waals energy	Electrostatic energy	Binding energy
SREBP1a- Betulin	-6500	-188	-6253	-150	-325	-475	-148	-325	-165
SREBP1a- Diosgenin	-6805	-250	-6318	-163	-596	-759	-165	-586	-268
SREBP1a- Smilagenin	-5832	-178	-4978	-135	-230	-365	-137	-215	-158

PRINCIPAL COMPONENT ANALYSIS

Figure 7: PCA analysis of protein with A) betulin B) diosgenin

A

CONCLUSION

An extensive assessment of various factors, including toxicity, lipophilicity, solubility, pharmacokinetics, drug-like characteristics, medicinal chemistry attributes, average potential energy, RMSD, RMSF, SASA, Δ Gsolv, Rg, and PCA findings, indicates that diosgenin holds promise as a superior inhibitor of SREBP in comparison to smilagenin.

REFERENCES

- Yi J, Zhu J, Wu J, Thompson CB, Jiang X. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31189-31197. doi: 10.1073/pnas.2017152117. Epub 2020 Nov 23. PMID: 33229547; PMCID: PMC7733797.
- De Cicco P, Catani MV, Gasperi V, Sibilano M, Quaglietta M, Savini I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients. 2019 Jul 3;11(7):1514. doi: 10.3390/nu11071514. PMID: 31277273; PMCID: PMC6682953.
- Rahman AAHA, Nassar IF, Shaban AKF, El-Kady DS, Awad HM, El Sayed WA. Synthesis, Docking Studies into CDK-2 and Anticancer Activity of New Derivatives Based Pyrimidine Scaffold and Their Derived Glycosides. Mini Rev Med Chem. 2019;19(13):1093-1110. doi: 10.2174/1389557519666190312165717. PMID: 30864522.
- Stenberg S, Stenqvist B. An Exact Ewald Summation Method in Theory and Practice. J Phys Chem A. 2020 May 14;124(19):3943-3946. doi: 10.1021/acs.jpca.0c01684. Epub 2020 May 5. PMID: 32285671.
- Khan FI, Lai D, Anwer R, Azim I, Khan MKA. Identifying novel sphingosine kinase 1 inhibitors as therapeutics against breast cancer. J Enzyme Inhib Med Chem. 2020 Dec;35(1):172-186. doi: 10.1080/14756366.2019.1692828. PMID: 31752564; PMCID: PMC6882459.
- Senapathi T, Bray S, Barnett CB, Grüning B, Naidoo KJ. Biomolecular Reaction and Interaction Dynamics Global Environment (BRIDGE). Bioinformatics. 2019 Sep 15;35(18):3508-3509. doi: 10.1093/bioinformatics/btz107. PMID: 30759217.
- Sharma Neha, Faisal Mohammad, Alatar A. Abdulrahman, Khan A M Kalim, Ahmad Saheem and Akhtar Salman *, Design, Sar, and Metabolism Study of Crucifereae Family Compound (Spirobrassinin) and its Analogs for Antiangiogenic Potential Targeting Hsp90, Current Proteomics 2021; 18(3). https://dx.doi.org/10.2174/1570164617999200731000719.
- Dmitriev AV, Filimonov DA, Rudik AV, Pogodin PV, Karasev DA, Lagunin AA, Poroikov VV. Drug-drug interaction prediction using PASS. SAR QSAR Environ Res. 2019 Sep;30(9):655-664. doi: 10.1080/1062936X.2019.1653966. Epub 2019 Sep 4. PMID: 31482727.
- Anwar MA, Choi S. Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis. Sci Rep. 2017 Mar 8;7:43807. doi: 10.1038/srep43807. PMID: 28272553; PMCID: PMC5341570.
- Kim HK, Anwar MA, Choi S. Association of BUD13-ZNF259-APOA5-APOA1-SIK3 cluster polymorphism in 11q23.3 and structure of APOA5 with increased plasma triglyceride levels in a Korean population. Sci Rep. 2019 Jun 5;9(1):8296. doi: 10.1038/s41598-019-44699-x. PMID: 31165758; PMCID: PMC6549162.

ACKNOWLEDGEMENTS

≻Organizing Committee members of BCADD-2023.

Supervisor, Department of Bioengineering.

≻ACBB

≻IIRC

≻BRTF

THANKYOU