Automating the Rational Design of Glycomimetic Drugs

Robert J. Woods

Complex Carbohydrate Research Center University of Georgia

GLYCAM-Web: www.glycam.org

Glycomimetics as a Therapeutic Strategy

- Exploits the specificity of the endogenous carbohydrate ligand
- Employ the native carbohydrate ligand as a basis for rational design
- Examples: Relenza[®] and Tamiflu[®]
- Review: Magnani and Ernst (2009) *Discov. Med.* 8, 247-252
 How to choose the "R" groups?

Cumstey et al. Angew. Chem. Int. Ed. 44, 5110-5112

Can We Block Pathogen Adhesion with Glycomimetics?

Ji et al. Curr. Opin. Struct. Biol. (2017) 44: 219-231 Matrosovich et al. Top. Curr. Chem. (2015) 367: 1-28 van Duijl-Richter et al. Viruses (2015) 7: 3647–3674

Rational Glycomimetic Design

How do we make the glycomimetic bind more strongly to the protein receptor?

• Stronger binding – smaller dose, higher efficiency, less change of side effects

Make chemical modifications that create new contacts between the small molecule and the protein surface "rational design"

Molecular Dynamics Can Discriminate Good from Bad Binders

But – which inhibitors should we simulate?

Putative Inhibitor 1

Putative Inhibitor 2

Grafting and Conformational Sampling

Graft R groups onto carbohydrates and conformational sampling.

- All rotatable bonds in the chemical moiety are identified and rotated
- A genetic algorithm is employed for conformational sampling
- $\Delta G_{rotamer} = \Delta G_{Vina} + \Delta G_{CH-\pi}$

R group Grafting Conf Sampling

Virtual Glycomimetic Screening

Virtual Glycomimetic Screening

Virtual Glycomimetic Screening

Proposed Online Webtool

Step 1: Upload/Fetch PDB

GLYCAM 🏹 🗄	lome About Nev	vs Help Tools 🔻 Downloads	s	Sign In - Give Feedback
Glycomimeti	ics	Step 1: Upload	Step 2: Options	Step 3: Download Files
	Either cl Choose a PDB file to uploa Choose File No file chose Project Title (Optional) Comment (Optional)	noose a PDB file to upload, or e a. • en	enter a PDB ID to use a pdb file from rcsb. Enter a PDB to load a file from rcsb.org. • Email Address (Optional)	org.

Goals:

- Provide an online platform for non-specialists
- User uploads a protein-carbohydrate complex
- We perform a free Library screening, MD simulation, and binding energy prediction
- User downloads the predicted best ligand structures and energies

Proposed Online Webtool

Step 2: Choose options

Proposed Online Webtool

Step 3: Download Results

Glycomimetics		Step 1: Upload PDB File			Step 2: Options		Step 3: Download File		
			Your job is co	mplete. Plea	ase download the result:	Result.zip De	ownload		
								Top 5 Analogs	
Select Position		Select R Group Library		R Group	Rank	Affinity Change (kcal/mol)	RIP		
Residue Index	Atom Name	Atom To Replace	Aldehydes	Sulfonyl Halides	Ketones	\checkmark	1	-5.67	12,708
111	O3	ноз 🗌				~~~~~	2	-4.56	1,998
112	N2	C7 🛛	X	X		~~~~	3	-2.34	49.4
113	O6	HO6 🗌				\sim	4	-1.23	7.77
114	01	HO1 🗌					5	-0.53	2.42
							*RIP = r	elative inhibitory potential	

Virtual Library Creation: Automated Ligand Parameterization

GAFF Forcefield

Forcefield Mixing

Automated MD Simulation

MD Post-processing and Analysis

CH-π Interactions in Carbohydrate Binding

PDB 2UVO Wheat Germ Agglutinin + GlcNAc

A Molecular Mechanical Model for CH- π Interaction

Experimental CH-π Interactions

- All the CH bonds on top aromatic amino acids.
- Diffuse distribution with the average matching the canonical geometry.

Xiao, Y., & Woods, R. J. (2023). Protein–Ligand CH– π Interactions: Structural Informatics, Energy Function Development, and Docking Implementation. *J. Chem. Theory Comput.*, *19*(16), 5503-5515.

Empirical CH-π Functional Form

•
$$E_{CH-\pi} = \sum \left(f(\theta) E_{HC} \cdot e^{\frac{-(R_{HC}-R_{HC}^{0})^{2}}{2C_{HC}^{2}}} \right)$$

• $f(\theta) = \cos\theta (0 \le \theta < 90^{\circ})$
• $E_{CH-Aromatic} = E_{CH-\pi} + E_{Vina}$

Xiao, Y., & Woods, R. J. (2023). Protein–Ligand CH– π Interactions: Structural Informatics, Energy Function Development, and Docking Implementation. *J. Chem. Theory Comput.*, *19*(16), 5503-5515.

Inclusion of CH-π Interactions Improves Carbohydrate Docking

 $\Delta E_{total} = w_{CH-\pi} * \Delta E_{CH-\pi} + \Delta E_{Vina}$

36 systems containing carbohydrate ligands (Vina-Carb[1]).

Significantly improved percentages of acceptable poses and average RMSDs.

[1] Nivedha, A. K., Thieker, D. F., Makeneni, S., Hu, H., & Woods, R. J. (2016). Vina-Carb: improving glycosidic angles during carbohydrate docking. *Journal of chemical theory and computation*, *12*(2), 892-901.

Blind Docking Example (PDB 5V6F)

Crystal Structure of the Second beta-Prism Domain of RbmC from V. cholerae bound to Mannotriose

RP 896

Systems Where Our Method Worked Well (DC-SIGN)

• A lectin involved in immunity. Exploited for infection by HIV³ and COVID⁴.

Mannose (control)

Representative Analog

[3] Geijtenbeek, T. B. H., & Van Kooyk, Y. (2003). DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. *Dendritic Cells and Virus Infection*, 31-54.
 [4] Cramer, J.; Lakkaichi, A.; Aliu, B.; Jakob, R. P.; Klein, S.; Cattaneo, I.; Jiang, X.; Rabbani, S.; Schwardt, O.; Zimmer, G., Sweet drugs for bad bugs: a glycomimetic strategy against the DC-SIGN-mediated dissemination of SARS-CoV-2. *Journal of the American Chemical Society* 2021, 143 (42), 17465-17478

Statistical Correlation to Experimental Affinity

Vina with CH- π significantly outperformed MM-GBSA in this system

[3] Cramer, J.; Lakkaichi, A.; Aliu, B.; Jakob, R. P.; Klein, S.; Cattaneo, I.; Jiang, X.; Rabbani, S.; Schwardt, O.; Zimmer, G., Sweet drugs for bad bugs: a glycomimetic strategy against the DC-SIGN-mediated dissemination of SARS-CoV-2. Journal of the American Chemical Society **2021**, *143* (42), 17465-17478

Conclusions

Glycomimetic design is amenable to automation

Expect to see it at glycam.org in 2024

Online Webtools ensure consistency and ease of use Predicted binding energies need to be improved

- Parameterization of existing scoring functions
- > Introduction of new physics (CH- π , water, entropy)
- > Need to introduce CH- π into AMBER force field for MD

Need beta test users

Acknowledgements

Infrastructure	Online Modeling Tools			
Lachele Foley	Dave Montgomery			
Dan Wentworth	Spandana Makeneni			
Yao Xiao	Amika Sood			
Oliver C. Grant				

