

Chemical proteomics in drug design

Roman Zubarev

Chemistry I, MBB, Biomedicum, Karolinska Institutet, Stockholm, Sweden

Roman.Zubarev@ki.se

New Medicines Needed for Those Who Do Not Respond to Current Therapy

Source: Spear B, et. al. Trends in Molecular Medicine, 7(5):201-204, 2001; Eli Lilly internal documents.

Proteins as drug targets

Santos et al. Nature Reviews Drug Discovery (2016)

Proteins by function

Chemical space is vast – millions of drugs are yet to be discovered

Most small-molecule drugs bind to protein target

https://www.medgadget.com/2013/07/new-technology-allows-for-monitoring-of-drug-target-binding-in-cells-and-tissues.html

Are drugs 'silver bullets' ?...

Imatinib (Gleevec)

Inhibits Tyr kinase BCR-Abl

Drugs are usually not very specific

Collins and Workman 2006 Nature Chemical Biology 2 689-700

Chemical Proteomics Aims

Protein-drug complex

Bottom-Up (Shotgun) Proteomics

Quantitative Proteomics

Log2(Abundance_{Sample}) - Log2(Abundance_{Control})

Research Article

OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification[†]

Max Bylesjö, Mattias Rantalainen, Olivier Cloarec, Jeremy K. Nicholson, Elaine Holmes, Johan Trygg ⊠

OPLS-DA - **Orthogonal** [Projection to Latent Structures / Partial Least Square] – Discriminant Analysis

Chemical Proteomics workflow

Saei, A. et al., *Redox Biology*, **2020**, doi.org/10.1016/j.redox.2020.101491

LC

Functional Idenitification of Targets by Expression Proteomics, FITExP

Chernobrovkin A. L., ..., Zubarev R. A. Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs. Sci Rep. (2015). 5 : 11176.

Protein abundance change: DHFR

Protein abundance change: TOPI

Functional Idenitification of Targets by Expression Proteomics, FITExP

OPLS-DA - **Orthogonal** [Projection to Latent Structures / Partial Least Square] – Discriminant Analysis

ProTargetMiner: Target and mechanism deconvolution

Saei, A. et al., Nat. Commun. 2019, 10, Article number: 5715.

ProTargetMiner: Target and mechanism deconvolution

Saei, A. et al., Nat. Commun. 2019, 10, Article number: 5715.

Saei, A. et al., Nat. Commun. 2019, 10, Article number: 5715.

FITEXP: Functional Identification of Target by Expression Proteomics

Challenges of Single Cell Proteomics

- Size = 5-10 μm
- Protein amount = 100-250 pg

Can we take Chemical Proteomics to Single Cell level?...

Dynamic range of proteins in the cell: **≥7 orders of magnitude**

Finding the protein in the right context at the time remains an important obstacle to overcome!

SCoPE-MS enables Single Cell Proteomics

96 A549 cells treated with MTX vs 96 untreated cells

Dihydrofolate reducatase

Vegvari et al., Anal. Chem. 2022, 94(26):9261-9

Protein Abundance

VS

Protein Solubility

Vendruscolo lab, Cambridge University

https://commons.wikimedia.org/wiki/File:PaxDB_C8ORF48_Protein_Abundance.png

Protein Aggregation

Adopted from: https://doi.org/10.1002/cphc.201900904

Thermal Proteome Profiling (TPP)

Tracking cancer drugs in living cells by thermal profiling of the proteome

Mikhail M. Savitski,^{1*+}† Friedrich B. M. Reinhard,¹† Holger Franken,¹ Thilo Werner,¹ Maria Fälth Savitski,¹ Dirk Eberhard,¹ Daniel Martinez Molina,² Rozbeh Jafari,² Rebecca Bakszt Dovega,² Susan Klaeger,^{3,4} Bernhard Kuster,^{3,4} Pär Nordlund,^{2,5} Marcus Bantscheff,^{1*} Gerard Drewes^{1*}

SCIENCE

3 OCTOBER 2014 • VOL 346 ISSUE 6205

TPP in Protein-protein interaction

TPP identifies protein interaction partners of proteins added to cell lysates

A. Saei et al., Nat. Commun. 2021

System-wide Identification of Substrates by Thermal Analysis - SIESTA

Thioredoxin reductase TrxR

Conserved C-terminal sequence Gly-Cys-SeCys-Gly

System 1: TXNRD1 + NADPH -> S-S bond reduction

A. Saei et al., Nat. Commun. 2021

System 1: TXNRD1 + NADPH -> S-S bond reduction

A. Saei et al., Nat. Commun. 2021

Redox proteomics

Leichert L. I. et al. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A. (2008). 105(24): 8197-202.

TPP limitations

- Not all proteins aggregate with temperature
- Too time consuming to measure every temperature point

Proteome Integral Solubility Alteration (PISA) Assay

1d pisa N_{HT}≈10

Gaetani M, et al. *J Proteome Res* **2019**, DOI:10.1021/acs.jproteome.9b00500

Drug binding is not the only parameter of interest;
Residence time of drug on target is of very high significance

PISA determines drug residence time

Sabatier et al., Analyt Chem, 2022

PISA determines drug residence time

kinase inhibitor ponatinib

Sabatier et al., Analyt Chem, 2022

PISA helps ranking targets

Sabatier et al., Analyt Chem, 2022

Rank conc-PISA

LYN

CSK

4 MAPK14

5 RIPK2

6 IRAK4

10 CDK5

11 DCK

2 RIPK1

1

3

7 TNIK

8 FECH

9 BRAF

MAPK14

CSK

LYN

RIPK1

TNIK

BRAF

DCK

FECH

CDK5

TPP/PISA limitations

- Not all proteins aggregate with temperature
- Too time consuming to measure every temperature point

Protein Aggregation

Salt concentration

Adopted from: https://doi.org/10.1002/cphc.201900904

pubs.acs.org/ac

Article

Ion-Based Proteome-Integrated Solubility Alteration Assays for Systemwide Profiling of Protein–Molecule Interactions

Christian M. Beusch, Pierre Sabatier, and Roman A. Zubarev*

C. Beusch et al., Analyt Chem 2022

Conclusions:

- Chemical proteomics reveals drug targets without chemical modification of drugs
- FITExP / ProTargetMiner uses expression level changes for drug target deconvolution; is already translated to single cell level
- TPP/PISA performs target deconvolution based on solubility changes
- PISA allows one to easily determine:
 - interacting partners of proteins;
 - enzyme substrates;
 - the residence time of drugs
- Ion-based PISA reaches sub-microgram level of sensitivity

Kim Haselmann Bogdan Budnik Frank Kjeldsen Michael Lund Nielsen Jesper Olsen Igor Ivonin Oleg Silivra **Christopher Adams** Alexander Misharin Mikhail Savitski Thomas Köcher **Corina Mayrhofer** Y.M. Eva Fung Konstantin Artemenko Therése Hemström Pierre Le Grevès Atim Enyenihi David Good Ernesto Gonzales **Consuelo Marin Vicente** Marta Guerrero Valero **Constantin Chingin** Yaroslav Lyutvinskiy Aleksandr Manoilov Hongqian Yang **Piliang Hao** Mohammad Pirmoradian Natliya Tarasova Alexandra Bernadotte Bo Zhang Alexey Chernobrovkin Amirata Saei **Pierre Sabatier** Ch ristain Beusch Janet Wang

Acknowledgements

Thorleif Lavold Juan Astorga-Wells Alexander Makarov Yury Tsybin Dimitris Papanastasiu Albert Lebedev

ThermoFisher Scientific

Biomotif AB

Swedish Research Council KAW foundation, VINNOVA European Union, EuroStars Cancerfonden

Produced by Pedro Lali