A structural/dynamic model of SARS-CoV-2 spike transmembrane domain in conjunction with the HR2 region: implications for membrane fusion

Elena ALIPER

Laboratory of Biomolecular Modelling Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow <u>*Ia.marelle@gmail.com*</u>

Moscow, 25 May 2022

Acknowledgments

Research within the scope of the present study was conducted at the Laboratory of Biomolecular Modelling at Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow,

with the valuable participation of:

Anton A. Polyansky Dmitry E. Nolde Nikolay A. Krylov Roman G. Efremov

SARS-CoV-2 spike protein transmembrane domain (S-TMD) **Cryptic so far**

- Class I fusion protein, TMD consists of 3 a-helices
- TMD is very likely to be crucial to membrane fusion
- HR2 hypothesised to interact with the membrane during fusion
- Data on S-TMD structure and functionality is scarce
- Tools for the prediction of TM trimer structure do not exist, models that exist gave the TMD brief consideration

The purpose of the study

membrane fusion.

To predict the 3D organisation of SARS-CoV-2 spike TMD (S-TMD) and use the resulting model to explore the possible role of the HR2 region in

Design of the study

1. Prediction S-TMD 3D structure:

how are helices packed?

3. Palmitoyl modifications introduced downstream of S-TMD

impact on stability?

Molecular dynamics simulations

Primary structure analysis, template-based modelling

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures Molecular dynamics

simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

Methods

A comprehensive framework was designed in the course of the study, bringing together a variety of methods

- Molecular hydrophobicity potential (MHP) mapping* (https://model.nmr.ru/platinum)
- Template-based modelling (MODELLER 9.19)
- Molecular dynamics (MD) simulations (GROMACS) explicit POPC bilayers tip3p water / counter-ions CHARMM36 FF 325K

★∎

Efremov RG et al. (1992) J Protein Chem. 11:665-75 Pyrkov TV et al. (2009) *Bioinformatics* 25:1201–1202.

Primary structure analysis, template-based modelling 3. Palmitoyl downstream of S-TMD

impact on stability?

Molecular dynamics simulations

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures Molecular dynamics

simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

Molecular hydrophobicity potential (MHP) mapping **Residues 1212-1234 were considered**

- Sequence patterns (small, Pro, charged, polar and hydrophobic AA) in S-TMD and candidate templates?
- The best match, the TMD of TNFR-1A, paid closer attention: translated into similar MHP patterns on the alpha-helix surface

Coordinate along the helical

spike TNFR-1 1212-WPWYIWLGFIAGLIAIVMVTIML----1234 214-LPLVIFFGLALLSLLFIGLAYRY-----236

Rotation angle

SPIKE

Rotation angle

TNFR-1

350

how are helices packed?

Primary structure analysis, template-based modelling 3. Palmitoyl downstream of S-TMD

impact on stability?

Molecular dynamics simulations

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures Molecular dynamics

simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

'MHP dynamic portrait' adjustment Fine-tuning of the trimer derived via template-based modelling

- The trimer derived via templatebased modelling: not perfect
- Imperfections eliminated via MD simulations in an explicit POPC bilayer
- The final model much stabler than the initial one

'MHP dynamic portrait' adjustment Fine-tuning of the trimer derived via template-based modelling

- The resulting model sported a **nearly** twofold increase of contact area between helices in the trimer
- ~25-fold decrease of free volume inside the trimer indicative of tight packing

Initial model

how are helices packed?

Primary structure analysis, template-based modelling 3. Palmitoyl modifications introduced downstream of S-TMD

Molecular dynamics simulations

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures Molecular dynamics

simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

S-TMD model features Helix/helix interfaces

- Helix/helix interfaces included residues identical (purple) and (semi-) conservative (green) across genus Betacoronavirus;
- Palmitoyls (golden) added at C1235 and C1236 (pink), the model retained its stability
- GxxxG motif

how are helices packed?

Primary structure analysis, template-based modelling 3. Palmitoyl downstream of S-TMD

impact on stability?

Molecular dynamics simulations

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures

Molecular dynamics simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

S-TMD model features Comparison to other structures

- Our final model (red): stable in a POPC bilayer
- Palmitoylation (green) did not affect stability
- Other models and structures were tested
- Recent NMR structure (blue) of the proposed spike TMD performed poorly in a POPC bilayer (PDB ID 7LC8)

how are helices packed?

Primary structure analysis, template-based modelling 3. Palmitoyl modifications introduced downstream of S-TMD

impact on stability?

Molecular dynamics simulations

2. The model tested and fine-tuned in a lipid bilayer

Molecular dynamics simulations

4. Compare to other available models and experimental structures Molecular dynamics

simulations

5. To fit together the model S-TMD and the HR2 region, study the extended system in the presence of a lipid bilayer

HR2: additional membrane adjuster during fusion? A hinge area required, as HR2 and TMD don't appear to be part of one coiled coil

The systems studied were:

PDB ID 2FXP (SARS-CoV)

> 2. Trimeric HR2+TMD anchored in a bilayer:

HR2

TMD

both domains stable, TMD in the membrane, HR2 in water

1. <u>Trimeric HR2 in water</u>:

remained stable, helix/ helix interfaces preserved 3. Monomeric HR2 placed above the membrane:

Charles and the East of the second

Limited affinity to the water/bilayer interface

HR2 interacted with the membrane, but failed to firmly align itself on the water/ bilayer interface.

Agrees with experimental data: Chiliveri SC et al. (2021) Sci Adv. 7:eabk2226.

Conclusions

- was created that conforms to the known principles of TM helix packing
- objects
- The model remained stable, either palmitoylated in accordance with experimental data or not, over the course of microsecond-range MD
- The model remained stable when extended to include the HR2 region
- The HR2 region was capable of interacting with a model bilayer when a force involved in membrane fusion

• A highly stable model of SARS-CoV-2 spike protein transmembrane domain

• Diverse computational methods were employed to create a comprehensive strategy for TM trimer structure prediction that could be used to model other

anchored via the TMD, but might require additional factors to properly serve as

