

XXVIII Symposium on Bioinformatics and

Computer-Aided Drug Discovery

QSPR Analysis in Photonics

Andrey A. Buglak

St. Petersburg State University, Russia

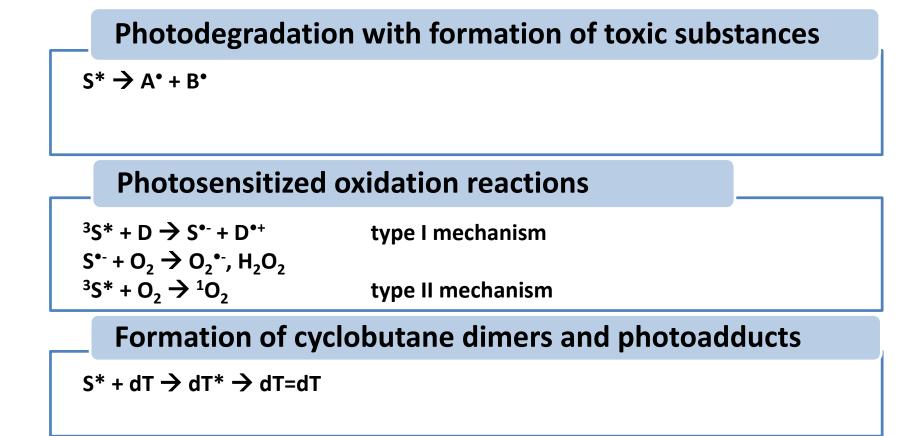
Moscow, May 24th-26th, 2022

Phototoxicity

Phototoxicity (also called photoirritation) is a chemically induced skin irritation, requiring light, that does not involve the immune response

Phototoxicity is a type of photosensitivity

Three main types of phototoxic reactions



Activity (Toxicity) QSAR Statistics Structure

QSAR is a useful tool in toxicology

QSAR is also used for:

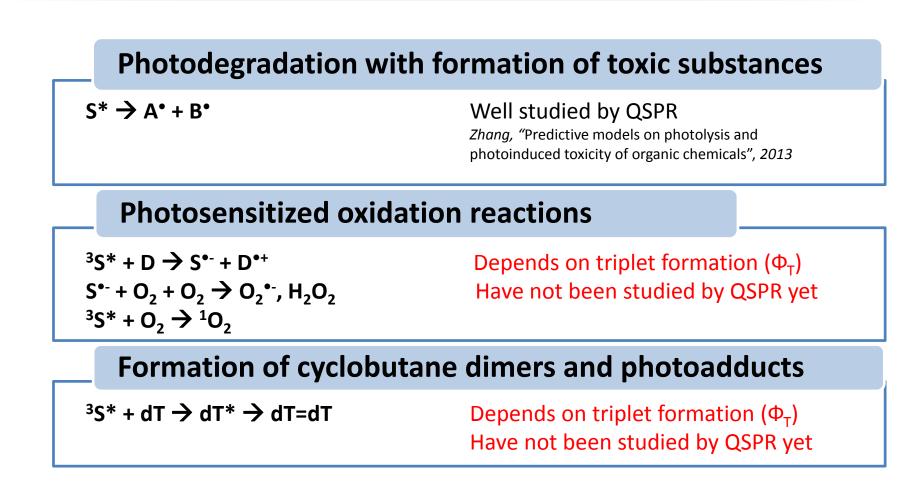
- structure-phototoxicity predictions
- photosensitizer activity predictions in PDT

In photochemistry QSPR is used for the prediction of:

- absorption wavelength
- fluorescence intensity
- photolysis rate constant/photolysis quantum yield
- rate constant of reaction with ${}^{1}O_{2}$

Is it possible to use QSPR to study phototoxic reactions?

Phototoxic reactions



Large part of phototoxic reactions depends on triplet state formation and has not been studied yet by QSPR!

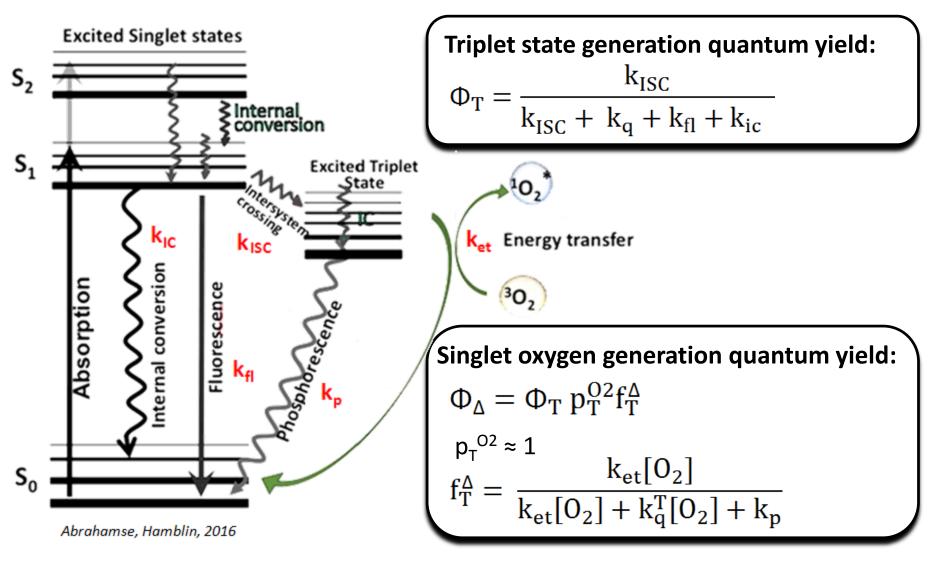
Aim

To apply QSPR methodology to the analysis of photosensitization reactions

Objectives

- To perform QSPR analysis of structure $\Phi_{\! T}$ and structure $\Phi_{\! \Delta}$ relationships
- To build models with sufficient predictive ability
- To find new data about photosensitizers activity

Theoretical basis



We have a rationale for applying QSPR!

Modeling workflow

Dataset selection

> 25 compoundsIdentical conditions

Work with 3D geometries

Conformational analysis Geometry optimization Alignment

Calculation of descriptors

- Physico-chemical

- Quantum-chemical

- Constitutional

- 3D, etc.

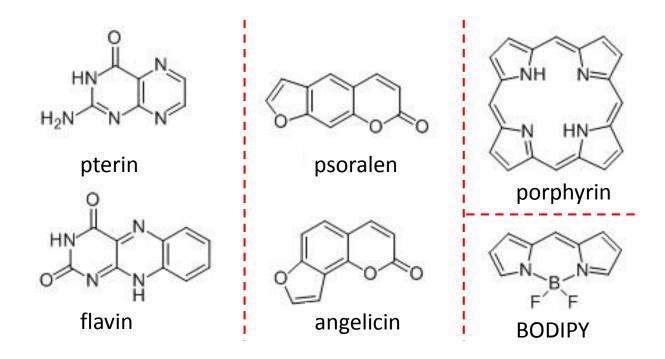
Model building and validation

MLR, GFA

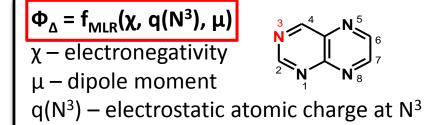
Internal validation (LOO, LMO, etc.)

External validation

Several case studies – several classes of compounds

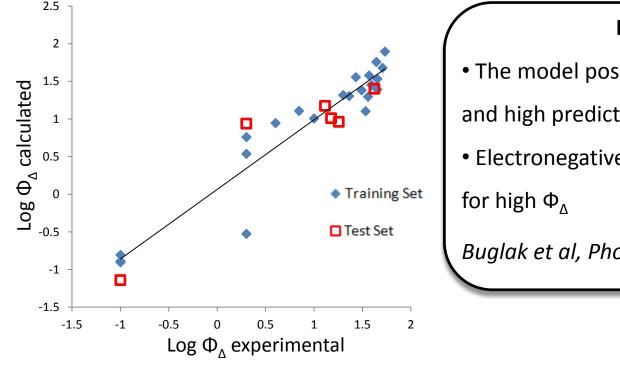


QSPR study of ¹O₂ generation by pteridines



Statistical parameters of the model

n=29; $R^2 = 0.92$ (sufficient if > 0.6) $q^2 = 0.88$ (sufficient if > 0.6) pred $R^2 = 0.87$ (sufficient if > 0.5)



Interpretation

The model possesses high internal stability

and high predictive ability

Electronegative substituents are favorable

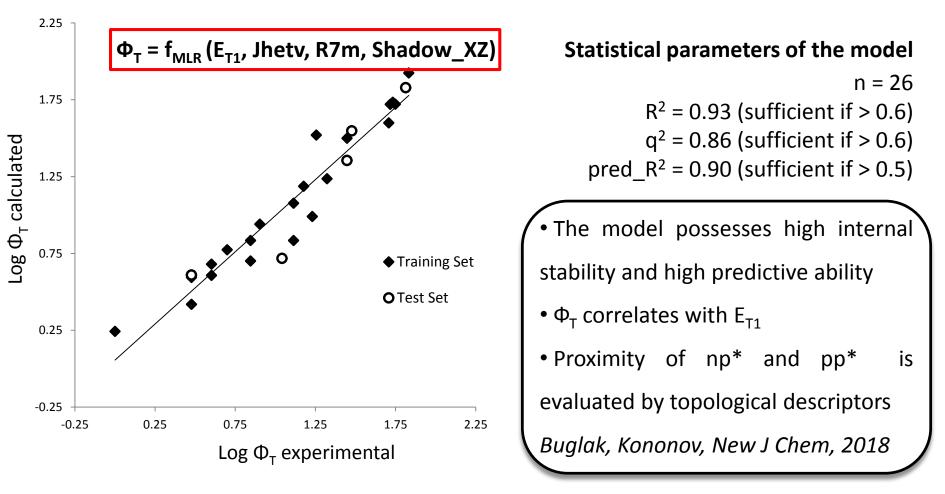
Buglak et al, Photochem. Photobiol. Sci., 2016

Our model effectively predicts Φ_{Λ}

QSPR study of T₁ generation by furocoumarins

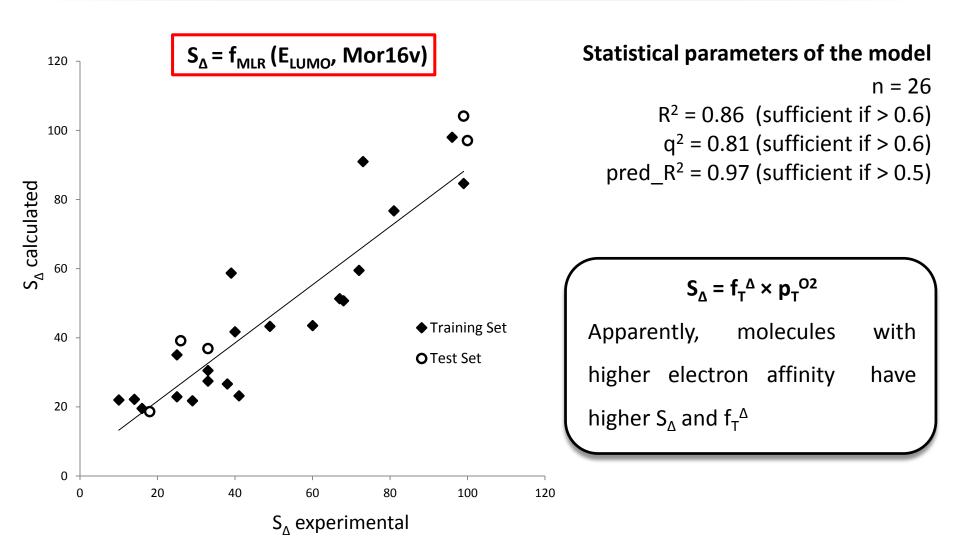
Generation of triplets and ¹O₂ by psoralens is a complicated matter due to the

proximity of np* and pp* states



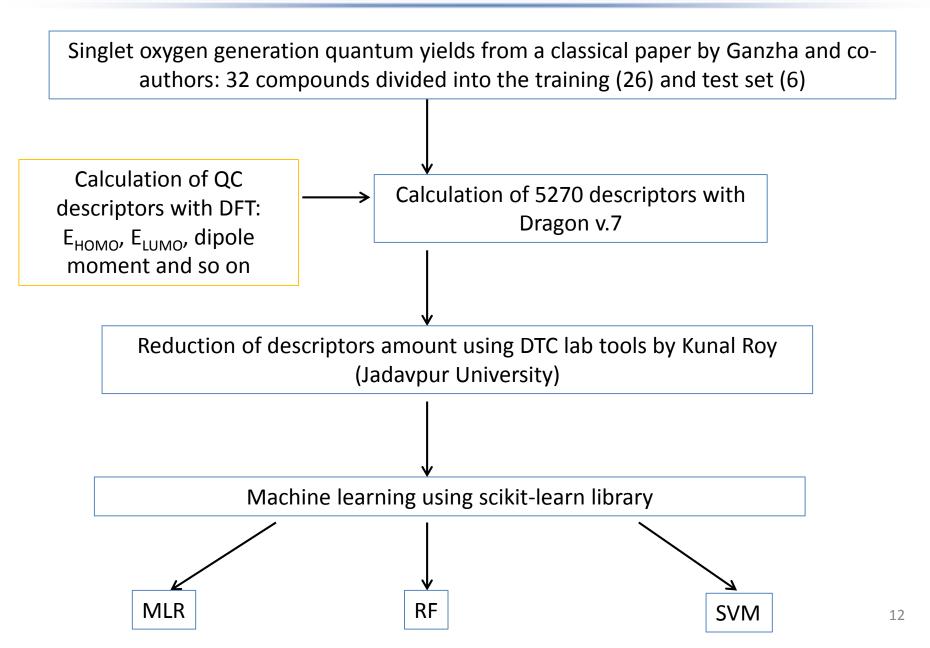
The model effectively predicts Φ_T

QSPR study of ¹O₂ generation by furocoumarins

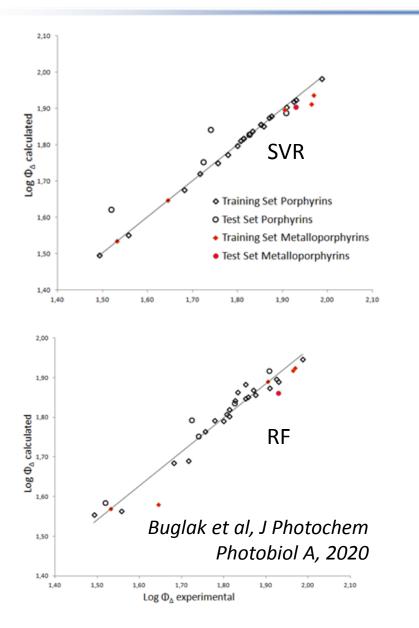


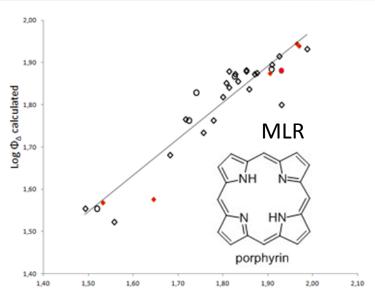
Our model effectively predicts S_{Δ}

QSPR study of ¹O₂ generation by porphyrins, the plan



QSPR study of ¹O₂ generation by porphyrins and Zn-porphyrins



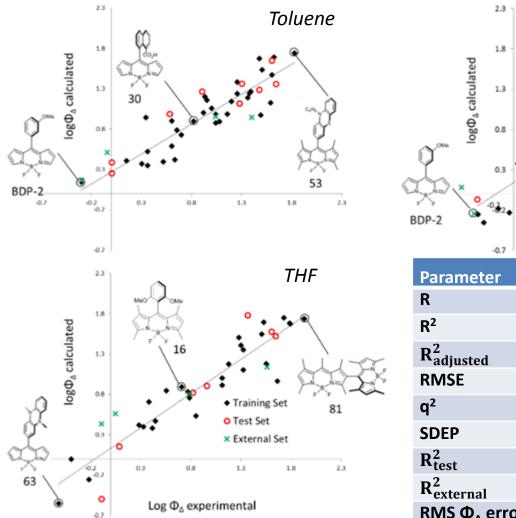


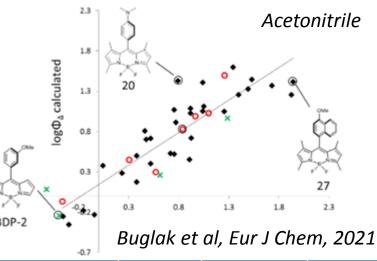
The models were built using a combination of autocorrelation, GETAWAY, topological, and quantum-chemical descriptors

Parameter	SVR	MLR	RFR
R	0.995	0.943	0.974
R ²	0.991	0.889	0.949
q ²	0.842	0.744	0.619
pred_R ²	0.801	0.866	0.875
RMSE	0.029	0.045	0.034
max Φ_{Δ} error	14.5%	21.9%	9.2%
RMS Φ_{Δ} error	3.5%	7.0%	4.1%

RFR model is the best one

QSPR study of ¹O₂ generation by >70 BODIPYs





Parameter	Toluene	Acetonitrile	THF
R	0.882	0.890	0.906
R ²	0.778	0.792	0.820
R ² _{adjusted}	0.739	0.744	0.773
RMSE	0.240	0.283	0.285
q ²	0.686	0.693	0.620
SDEP	0.306	0.344	0.414
R ² _{test}	0.800	0.823	0.879
R ² _{external}	0.635	0.722	0.584
RMS Φ_Δ error	8.2	18.3	12.0

QSPR is useful for predicting $\Phi\Delta$ in media with different polarity!

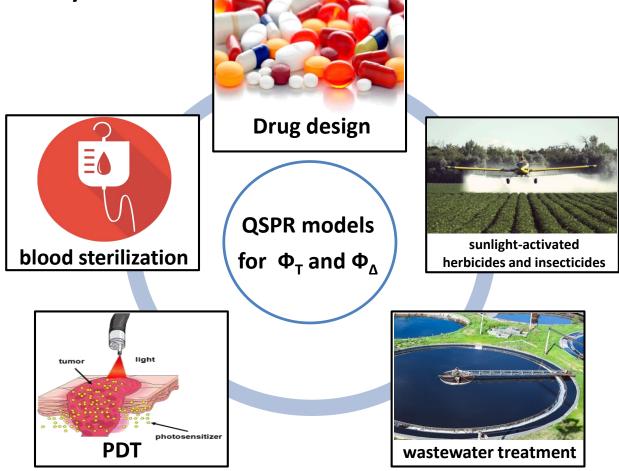
1. The QSPR models for Φ_{Δ} , Φ_{T} and S_{Δ} possess high internal stability and high predictive ability

2. For the first time correlations between structure and activity have been shown for pteridines, psoralens, and BODIPYs

3. QSPR is applicable to the study of T₁ formation and ¹O₂ generation by organic sensitizers

Perspectives

Models "structure - triplet quantum yield" and "structure – ${}^{1}O_{2}$ generation quantum yield" may be beneficial not only in drug design, but also in other areas of chemical industry



- To use QSPR in the study of triplet state lifetime, triplet state energy, etc.

- To try different classes of compounds: fluoroquinolones, anthracenes, etc.

 To find whether QSPR is applicable to the study of triplet state formation by metal-organic compounds: metalloporphyrins, ligand-protected metal nanoclusters, heavy-atom-containing BODIPYs