

Self Consistent Classifier SAR Approach

LEONID STOLBOV, DMITRY FILIMONOV, VLADIMIR POROIKOV

IBMC, Moscow, 2022

E-mail: stolbovla@yandex.ru

Analysis of structure-activity relationship - classification

Structure Inhibits the ... Inhibits the ... Does not activate the ... Is toxic for...

The SAR approach significantly depends on the available experimental data utilized as the training set. To overcome the issues with data quality and diversity, classification methods are used to designate active and inactive structures.

Though a number of algorithms have been developed to satisfy the activity classification needs, the ability of the model to produce a generalized predictions is still challenging.

In this study we present a new method for classifying chemical compounds by their activity based on the statistical regularization

Forerunners

GUSAR software was designed to develop (Q)SAR models using **QNA descriptors** and **Self Consistent Regression** (SCR) approach

QNA descriptors are calculated based on connectivity matrix C and the values of ionization potential *IP* and electron affinity *EA*.

Each atom is represented by two values:

$$P_{i} = B_{i} \sum_{k} \left(\exp\left(-\frac{1}{2}C\right) \right)_{ik} \frac{1}{2} (IP_{k} - EA_{k})^{-\frac{1}{2}}$$
$$Q_{i} = B_{i} \sum_{k} \left(\exp\left(-\frac{1}{2}C\right) \right)_{ik} \frac{1}{2} (IP_{k} - EA_{k})^{-\frac{1}{2}} \frac{1}{2} (IP_{k} + EA_{k})$$

 $\begin{array}{c}
\mathbf{Atom} \quad \mathbf{EA} \quad \mathbf{IP} \\
\mathbf{C} \\
\mathbf{0} \\
\mathbf{1.26} \\
\mathbf{11.26} \\
\mathbf{0} \\
\mathbf{1.46} \\
\mathbf{13.62}
\end{array}
\mathbf{P} \\
\mathbf{Q} \\
\begin{array}{c}
\mathbf{W} \\
\mathbf{W}$

Quantitative Neighbourhoods of Atoms

SCR is a Bayes regression with regularization parameters where coefficients could be found:

$$a = \underset{a}{\operatorname{argmax}} p(a|X, y, V)$$
$$p(a|X, y, V) = \frac{p(y|X, a)p(a|V)}{p(y|X, V)}$$

X – descriptor matrix

y – activity values

V – regularization parameters

Filimonov D.A. et al. SAR and QSAR Environ. Res., 2009, 20: 679-709. Rudik A.V. et al. J. Chem. Inform. Model., 2014, 54: 498–507.

- The impact of each feature variable is restricted
- The *a priori* distribution of regression coefficients is assumed
- Parameters of this distribution are introduced to the model development process as regularization parameters

Distribution of regression coefficients p(a|V) with V parameters. Regression coefficients are found with maximization of *a posteriori* density:

$$\boldsymbol{a} = \operatorname{ArgMax}_{\boldsymbol{a}} p(\boldsymbol{a} | \mathbf{X}, \boldsymbol{y}, \mathbf{V}),$$

Which is expression

$$p(\boldsymbol{a}|\mathbf{X}, \boldsymbol{y}, \mathbf{V}) = \frac{p(\boldsymbol{y}|\mathbf{X}, \boldsymbol{a})p(\boldsymbol{a}|\mathbf{V})}{p(\boldsymbol{y}|\mathbf{X}, \mathbf{V})}$$

composed of likelihood functions

$$p(\boldsymbol{a}|\boldsymbol{V}) = Exp\left(\frac{1}{2}trLn\left(\frac{1}{2\pi\sigma^2}\boldsymbol{V}\right) - \frac{1}{2\sigma^2}\boldsymbol{a}'\boldsymbol{V}\boldsymbol{a}\right).$$

SCR fits quantitative model development needs but could be applied for classification model development

Exponential and Logistic SCR

There are two features of ESCR and LSCR that distinguish them from SCR:

- Misclassification is strongly penalized
- Structures close to separating hyperplane are more important and have increased value of weight in the model

These features make ESCR/LSCR common to support vector machine as well as native SCR and allow to select the most important features in enhanced manner

The LSCR and ESCR algorithms are implemented from scratch using the C++ programming language and integrated into the R environment with Rcpp mediation for results processing.

Probability estimation

Probabilities for positive and negative examples could be expressed with Bernoulli scheme:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{a}) = Exp\left(\sum_{k=1}^{n} (y_k Ln P_k + (1 - y_k) Ln(1 - P_k))\right)$$

 $P_k = P(x_k, a)$ – probability of positive case for k structure with descriptors x_k and regression parameters a. LSCR is produced with introducing additional the logistic function:

$$P(x, a) = (1 + Exp(-x'a))^{-1} = \frac{1}{1 + Exp(-x'a)}$$

Resulting in a likelihood function:

$$Ln(p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{a})) = -\sum_{k=1}^{n} Ln(1 + Exp(-u_k \boldsymbol{e}'_k \boldsymbol{X} \boldsymbol{a})), \quad u_k = 2y_k - 1, \quad u_k = \pm 1, \quad u_k^2 \equiv 1.$$

Penalties

$$Ln\left(1+Exp\left(-u_{k}\boldsymbol{e}_{k}^{\prime}\boldsymbol{X}\boldsymbol{a}\right)\right)$$

function penalizes in almost linear manner

The penalties of misclassification could be enhanced using

 $Exp(-u_k e'_k X a)$ instead

Simulations with generated data

Generated data weights

Data sources: HIV datasets

HIV inhibitors structural and activity data was extracted from three sources:

- **NIAID ChemDB HIV** is a freely available database of HIV inhibitors;
- **ChEMBL** is a freely available database with the data on drug-like compounds;
- **Integrity** is a commercial database with pharmaceutical development data.

All extracted data was curated in accordance with modern requirements.

	IN	PR	RT
NIAID	10377/ 3459	7604/ 5972	8936/ 5675
ChEMBL	2283/ 1430	2387/1542	2149/ 1390
Integrity	563/ 328	316/ 268	731/ 615

Number of entries before / after curation

Data sources: Tox21 datasets

Tox21 – 57 datasets

data generated from nuclear receptor signaling and stress pathway assays

Species / Tissue Type

HIV data was classified based on the cutoff equal to 1 μM Tox21 data taken initially classified

11

HIV models

Integrase				
Модель	Ν	E		
	4004	0.0		

SVM	4091	0.826	111*	0.698
ESCR	4091	0.840	111	0.818
LSCR	4091	0.839	107	0.819

CV

Protease				
Модель	Ν	BA	V	CV
SVM	6552	0.785	140*	0.715
ESCR	6552	0.843	140	0.816
LSCR	6552	0.828	134	0.808

Reverse transcriptase

Модель	Ν	BA	V	CV
SVM	6309	0.672	166*	0.636
ESCR	6309	0.777	166	0.758
LSCR	6309	0.761	128	0.740

- N number of compounds in the dataset
- **BA** balanced accuracy
- V number of selected features
- **CV 5-fold cross validation mean balanced accuracy**
- * SVM was applied with descriptors taken from ESCR

Tox21 models

- A new approach to the classification models development was implemented from scratch.
- HIV inhibiting data and Tox21 data were used to build classification models.
- SCR, SVM, LSCR, ESCR approaches were used.
- Validation and comparison of models was carried out.
- LSCR and ESCR models showed advances in balanced for both training and cross validation test sets in comparison with SVM.
- LSCR and ESCR showed advances in dimensionality reduction problem in comparison with native SCR.

Acknowledgements

Author thanks the following contributors for the assistance: Filimonov Dmitry Vladimir Poroikov

This study was supported by the Russian Foundation for Basic Research grant No. 20-04-60285

Thank you for your kind attention!

Back up

$$Ln(p(\mathbf{y}|\mathbf{X}, \boldsymbol{a})) = -\sum_{k=1}^{n} Exp(-u_k \boldsymbol{e}'_k \mathbf{X} \boldsymbol{a}),$$
$$u_k = 2y_k - 1, \qquad u_k = \pm 1, \qquad u_k^2 \equiv 1.$$