IN SILICO ANALYSIS OF VARIOUS FUNGAL SECONDARY METABOLITES AND ANTIRETROVIRAL DRUGS ON ITS MOLECULAR BINDING TO NIPAH VIRUS PROTEINS INVOLVED IN CELLULAR ATTACHMENT, FUSION, AND REPLICATION

C. Algenio, N. Cruz, C. Evangelista, A. Macabeo, O. Villaflorres, A. Cabal
Nipah virus (NiV) is a biosafety level 4 (BSL-4) pathogen that causes extreme respiratory illness and encephalitis among infected patients.

- It is an *enveloped virus* containing a single layer of surface protrusions.
- NiV genome contains *six transcription units* that encodes the main structural proteins of the virus.

ZOONOTIC

NO VACCINE AVAILABLE

HIGH PRIORITY PATHOGEN

Epstein et. al, 2022; CDC, 2020; WHO, 2018, Tigabu et. al, 2014
The virus mainly enters cells through the fusion of the virus' cell membrane on the hosts' plasma membrane.

- The F and G proteins work in high coordination allowing the viral entry of the virus.
- The P protein is responsible for the viral replication of the nipah virus.
METHODOLOGY

Target Protein Preparation
- Glycoprotein
- Fusion Protein
- Phosphoprotein

Molecular Docking Simulation
- The three-dimensional molecular structure of the target proteins is added to the docking platform as PDB formats

Ligand Selection and Preparation
- 49 Fungal secondary metabolites
- 14 antiretroviral drugs

Post-Dock Analysis
- The docking poses with the prime affinity represent the set and are subjected to the post-dock analysis

Highest affinity protein-ligand complexes
RESULTS

Alkaloids norquinadoline A and quinadoline B, and polyketide isochaetochromin D1 showed the highest binding affinity on the glycoprotein G, fusion protein F, and phosphoprotein P of NiV.
RESULTS

QUINADOLINE B

- Fumiquinazoline alkaloid previously reported to have anti-influenza (H1N1) properties.

<table>
<thead>
<tr>
<th>Target Viral Protein</th>
<th>Ligand Against NiV Viral Proteins</th>
<th>Binding Energy (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion Protein</td>
<td>Quinadoline B</td>
<td>-10.4</td>
</tr>
<tr>
<td>Phosphoprotein P</td>
<td>Quinadoline B</td>
<td>-9.1</td>
</tr>
</tbody>
</table>

(Quimque et al., 2020)
Docked pose of quinadoline B against fusion protein F of NiV showing molecular interactions on (A) molecular surface and (B) 2D representation.
Docked pose of quinadoline B against phosphoprotein P of NiV showing molecular interactions on (A) molecular surface and (B) 2D representation.
CONCLUSION

- Fungal-derived secondary metabolites yielded the highest binding energy scores on the glycoprotein, fusion protein, and phosphoprotein of NiV involved in cellular attachment, fusion, and replication.

- Quinadoline B showed multi-target characteristics due to its favorable binding scores with proteins F and P

- strong favorable binding interactions are predominantly charged and hydrophobic interactions conferring stable protein-ligand complexes.

- It is recommended to explore the application of the top-ranked ligands about their antiviral activity against NiV in vitro.
REFERENCES

THANK YOU!