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Read-across

[=]

*Read across (RA) is a prediction method of unknown chemicals from the chemical

analogues with known toxicity from the same chemical category.

eIt is accepted by REACH and US EPA.
*Used for data gap filling.

*Defined chemical category Is
necessary.

« Strategies: One-> One; One - Many
Many - One; Many - Many

*Analog approach

«Category approach
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Scenario
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Schultz et al. 2019, Computational Toxicology
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Workflow for read-across predictions
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Source chemicals with available Predicted toxicity data

toxicity dara
Selection of up to 10 most

similar source compounds

Calculation of
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M @ Similarity checking between Target Sources upto 10

target and sounrces
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larget chemical without
roxicity data

pTec ¢ i f
e = Weighted average of {
LAB — toxicity data of selected ‘
Read-Across-v4.0 source componnds ‘
W xT,
v WAP =
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“ED: Euclidean distance-based similarity; GK: Gaussian kernel function similarity; LK: Laplacian kernel function similarity
**WAP: Weighted average predictions; W;: weightage of i’ source compound (based on similarity); T;: toxicity of i’ source compound




Toxicity Value

Read-Across
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Supervised learning (Response - dependent)

Luetchfeld et al., Toxicol Sci 165(1):198-212.
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RASAR
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RASAR

Table 1 List of similarity and various error measures generated for each query compound during read-across predictions

Measure Definition

Dispersion measures
SD_activity Standard deviation of the (observed) activity values of the selected close source compounds for each query compound
CV _activity Coefficient of variation of the response

Similarity measures

Average similarity Mean similarity to the close source compounds for each query compound

SD_similarity Standard deviation of the similarity values of the selected close source compounds for each query compound
MaxPos Maximum Similarity level to the Positive close source compounds (based on source set observed mean)
MaxNeg Maximum Similarity level to the Negative close source set compounds (based on source set observed mean)
AbsDiff Absolute difference between MaxPos and MaxNeg

Concordance measure

g g = 1 — 2 x |PosFrac — 0.5|, where PosFrac is the fraction of the close source compounds belonging to the Positive
Class based on the source set response mean as the threshold [11]

-
0

9/20/2023 10

5




Measure EXxpression

Weighted average activity :
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Measure EXxpression

GK-based similarity function

L K-based similarity function

Average similarity

SD_similarity
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Measure Expression

MaxPos

MaxNeg

AbsDiff AbsDiff = |MaxPos — MaxNeg|
Concordance measure g =1-2x|PosFrac —1/2|
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RASAR

g=1-2xX|PosFrac - 1/2|

gm = (=1)" X 2|PosFrac — 0.5

PosFrac=0.5
g=1.0

NegFrac=0.6
£=0.8

126

NegFrac=0.7
£=0.6

Negative

NegFrac=0.8
g=0.4

PosFrac=0.8
g=0.4

.ﬂ:

PosFrac=0.6
£=0.8

d \
PosFrac=0.7
£=0.6

Positive

/
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RASAR

RASAR Algorithm linked with AOP

Feature vector
(Similarity
descriptors based
on Fingerprint/

property, Toxicity
values against
multiple

endpoints)
Explore maximum similarity Supervised

Query Random Fores
AOP1 m=es) Endpoint 1 ~compounds \

- :_’ . Model
— SpOmEE predictions for
AOP3 —:—» Endpoint 3 endpoints

Unsupervised

—

Similarity matrix generation

Chemical
Datasets:
Chemical
Identifiers,
Endpoint
values

learning like

multiple

_ 9/20/2023 o 16
Banerjee and Roy, Molecular Diversity, 2022



RASAR
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RASAR algorithm combining QSAR and Read-across

Chemical Dataset
with quantitative

response values

2D descriptors
I Predictions

Training set
(Source compounds)

RASAR model
development
(supervised)

Test set
Target compounds)

Feature selection through QSAR Jj | Chemical similarity-based measures
model development based on read-across approach

(supervised) (unsupervised)




RASAR Descriptor C
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Modeling androgen receptor binding affinity

o » Chemosphere 309 (2022) 136579
Collection of the Rat ~1- NN —
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.4ndr0gen Receptor (/\ - 4 b T Wea g \ S \ Chemosphere
Binding Affinity Data AN EDCs ™~ e Chemosphere
(n=208) r[ ‘SF,V]F‘R. journal homepage: www.elsevier.com/locate/chemosphere

Supporting studies to validate the features identified from QSAR and
Chemical Read-Across

e

n
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s Book ; ! ° g . Screening of essential affinity for screening Endocrine Disruptor Chemicals using 2D-QSAR and
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Modeling androgen receptor binding affinity

Contents lists available at ScienceDirect

e Chemosphere
|
. . .. Quick and efficient quantitative predictions of androgen receptor binding | &&
We have used a data set androgen receptor binding affinity (RBA) afiniy for sreening Endocrine Distuptor Chemicals using 2D-0SAR and
originally collected from the Endocrine Disruptor Knowledge Base Arkaprava Banerie®, Pryanka D", Vinay Kumar®,Suprtik Kar', Kl Roy™
(EDKB) database (https://www.fda.gov/science-resea rch/bioinformatics-
tools/endocrinedisruptor-knowledge-base), and chemical curation of the LogRBA = —3.23 +0.49 x SsssCH — 041 x MaxaaCH +0.23 x nCconj
Compounds was performed by the app' ication of a KNIME workflow +0.35 x LogP99 — 0.17 x F10[C — O] +0.06 x minsOH + 0.06
. . . . . N% +0.67 x FO8[O — F]
(https://sites.google.com/site/dtcla bdc/) taking the single.sdf file as Sl e i
Input. ﬁ , , .
Riiin =0.74,, 0% 5 =0:68,0%,= 0.58, 0%, =0.58
Scaled average r,zn( Train) =0.57, Scaled average r,:'" (Test) =0.50
nTraInlng - 1021 nTest =44 Scaled delta r’,(Train) = 0.18, Scaled delta r.(Test) = 0.07

] ] ] ] MAE ;1pan) = 0.46, MAE 1r51) = 0.54, 1 1yining) = 103, N 7s) = 44
We have finally used the descriptors selected in the previous QSAR model

as the important physicochemical measures of the compounds in addition
to different similarity measures as described below for the g-RASAR
analysis.
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Table 2 List of physicochemical
features selected from the
previously reported QSAR
model [12]
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Modeling androgen receptor binding affinity

Measure

SsssCH
MaxaaCH
nCconj
LOGP99
F10[C-O]
minsOH
N%
FO8|O-F]

Description

Sum of E-state value of tertiary carbon atoms of type >CH-
Maximum F-state value of the carbon atom of type aaCH
Number of non-aromatic conjugated carbons (sz)
Wildmann-Crippen octanol-water partition coefficient
Frequency of C and O at the topological distance 10

Minimum Estate of the ~OH hydroxyl group

The percentage of nitrogen present in the molecular structure
The frequency of O and F atoms at the topological distance of 8

Comment

F-state index

F-state index
Constitutional descriptor
Hydrophobicity measure
Atom pair index

F-state index
Constitutional descriptor
Atom pair index




RASAR: Modeling androgen receptor binding affinity
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Table 3 List of g-RASAR models

Model no. Equation

Individual g-RASAR models

M1 logRBA = —1.33 4+ 2.27MaxPos(GK ) — 3.57Avg.Sim(GK) — 1.02g(GK) + 0.04minsOH — 0.14N% — 0.06F10[C — O]

M2 logRBA = —2.38 — 1.66MaxNeg(GK ) + 0.78MaxPos(GK ) + 4.32SDSimilarity (GK ) + 0.06minsOH — 0.09N% — 0.05F10[C — O]
M3 logRBA = —1.97 4+ 0.35S8sssCH + 1.55MaxPos(GK) — 0.34MaxaaCH - 1.31Avg.Sim(GK) 4+ 0.01minsOH — 0.04F10[C — O]
M4 logRBA = —2.93 — 1.25MaxNeg(GK ) + 1.22MaxPos(GK) + 0.735DActivity(GK ) + 0.05nCconj 4+ 2.47SDSimilarity(GK ) + 0.03minsOH

Pooled descriptor g-RASAR models

Pl (M1 + M2) logRBA = —1.71 — 1.47MaxNeg(GK) + 1.06MaxPos(GK) 4+ 2.88SDSimilarity (GK) — 0.86Ave.Sim(GK)
+0.05minsOH — 0.41g(GK) — 0.10N% — 0.05F10[C — O]

P2 (M14+M2+M3) logRBA = —1.76 — 1.00MaxNeg(GK) + 0.295sssCH + 0.91MaxPos(GK) — 0.24MaxaaCH — 0.40Avg.Sim
+1.328SDSimilarity(GK) + 0.03minsOH — 0.04F10[C — O] — 0.05N% + 0.17g(GK)

P3 (M14+M2+M4) logRBA = —=2.55 — 1.13MaxNeg(GK) + 1.10MaxPos(GK) + 0.725DActivity(GK) 4+ 0.08nCconj — 0.48Ave.Sim(GK)

+1.81SDSimilarity(GK) + 0.03minsOH — 0.05F10[C — O] — 0.06N% + 0.13g(GK) DTG
9/20/2023 22
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RASAR: Modeling androgen receptor binding affinity

Regression Coeflicient Plot (M1) (b) Regression Coeflicient Plot (M2)
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RASAR: Modeling androgen receptor binding affinity
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RASAR: Modeling androgen receptor binding affinity

Comparison of prediction quality of RASAR

models
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RASAR: Modeling androgen receptor binding affinity

logRBA = — 1.21 — 1.31MaxNeg(GK) + 0.58¢, (GK) + 0.21MaxPos(GK) + 2.23SD Similarity

(Pla)
(GK) — 0.67Ave.Sim(GK) + 0.06 min sOH — 0.10N% — 0.13F10[C — O]

NTraining = 102 np. =44 LV =4

2 _ 2 _ : 2 _ ' 2 _ : _ :
R* = 0.753 Q2 oo, = 0.698 Q2 =0.674 02, = 0.674 MAE pggp, = 0.461

VIP Plot Model P1
VIP[Comp. 3]

2.00
1.80

gm = (—1)"x 2|PosFrac — 0.5| s

n=1 if MaxPos < MaxNeg, n=2 if MaxPos > MaxNeg 0.60

0.40

VP3|

0.20
0.00

Var ID (Primary)

VIP Plot Model P1m g TTI T
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RASAR: Modeling five toxicity endpoints
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On Some Novel Similarity-Based Functions Used in the ML-Based
g-RASAR Approach for Efficient Quantitative Predictions of Selected

Toxicity End Points
Arkaprava Banerjee and Kunal Roy*
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RASAR: Modeling five toxicity endpoints

RASAR Model (Dataset 1) RASAR Model (Dataset 2)
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RASAR Model (Dataset 4)
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RASAR: Modeling five toxicity endpoints

RASAR Model (Dataset 5)

1=BOS[C-N]
2=B04[C-O]

3=X3A

4=Psi_i 0d
S=gm*SD Similarity
6=Neg.Avg.Sim
7=nR=Cp
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RASAR: Modeling five toxicity endpoints

Datasets Model R? Qtoo Q%1 Q%> MAE tgst) *
Dataset 1 q-RASAR (GK) 0.71 0.63 0.70 0.70 0.44
QSARD 0.74 0.68 0.58 0.58 0.54
Dataset 2 q-RASAR (GK) 0.68 0.54 0.77 0.77 0.35
QSAR!® 0.66 0.58 0.65 0.65 0.46
Dataset 3 q-RASAR (LK) 0.62 0.53 0.83 0.83 0.41
QSARY"Y 0.67 0.59 0.65 0.65 0.58
Dataset 4 q-RASAR (GK) 0.68 0.53 0.68 0.60 0.51
QSAR! 0.66 0.57 0.66 0.58 0.58
Dataset 5 q-RASAR (GK) 0.73 0.64 0.74 0.74 0.45
QSAR?% 0.74 0.66 0.68 0.68 0.49

Banerjee and Roy, Chem Res Toxicol, 2023
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RASAR: Modeling five toxicity endpoints
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DTC Plot for the RASAR model Applicability Domain
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Scatter Plot of the PLS q-RASAR model
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Abstract

In this study, the specific surface area of various perovskites was modeled using
a novel quantitative read-across structure-property relationship (q-RASPR) ap-
proach, which clubs both Read-Across (RA) and quantitative structure-property
relationship (QSPR) together. After optimization of the hyper-parameters, cer-
tain similarity-based error measures for each query compound were obtained.
Clubbing some of these error-based measures with the previously selected fea-
tures along with the Read-Across prediction function, a number of machine
learning models were developed using Partial Least Squares (PLS), Ridge Re-
gression (RR), Linear Support Vector Regression (LSVR), Random Forest (RF)
regression, Gradient Boost (GBoost), Adaptive Boosting (Adaboost), Multiple
Layer Perceptron (MLP) regression and k-Nearest Neighbor (kNN) regression.
Based on the repeated cross-validation as well as external prediction quality
and interpretability, the PLS model (ny, .., =38, ng, =12, R} =0.737,
Qoo = 0.637, R}, =0.898, Qi .., =0.901) was selected as the best pre-
dictor which underscored the previously reported results. The finally selected
model should efficiently predict specific surface areas of other perovskites for
their use in photocatalysis. The new q-RASPR method also appears promising
for the prediction of several other property endpoints of interest in materials
science.

KEYWORDS
machine learning, perovskites, photocatalysis, g-RASPR, specific surface area
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Machine learning-based q-RASPR modeling of
power conversion efficiency of organic dyes in dye-
sensitized solar cells+

Souvik Pore, Arkaprava Eanerjee@ and Kunal Rﬂyﬁ*

Different computational tools are now popularly used as an alternative to experiments for predicting several
property endpoints of industrial importance. Recently, read-across and quantitative structure—property
relationship (QSPR) have been merged to develop a new modeling technique read-across structure—
property relationship (RASPR) which appears to have much potential in predictive modeling. This
approach is also promising for modeling relatively smaller data sets as the similarity-based RASPR
descriptors are computed from multiple structural and physicochemical features. To understand the
potential of RASPR in data gap filling, we have undertaken a case study of modeling Power Conversion
Efficiency (PCE) of different classes of organic dyes used in Dye-Sensitized Solar Cells (DSSCs) for
renewable energy generation. We have used a large dataset of 429 compounds covering 4 classes of
organic dyes. We initially performed read-across analysis using different similarity measures with
structural analogues for query compounds and calculated the weighted average predictions. Based on
the read-across optimized settings, RASPR descriptors were calculated, and these were then merged
with the chemical descriptors, and finally, a single partial least squares (PLS) model was developed for
each of the dye classes after feature selection, followed by additional Machine Learning (ML) models.
The external prediction quality of the final RASPR models superseded those of the previously developed
Q5PR models using the same level of chemical information. The important structural features and
similarity measures contributing to the PCE have been extracted using the RASPR method which can be
used to enhance the PCE values in the newly designed dyes. The RASPR method may also be efficiently
applied in modeling other properties of interest in a similar manner.
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Prediction-Inspired Intelligent Training for the Development of
Classification Read-across Structure—Activity Relationship (c-RASAR)
Models for Organic Skin Sensitizers: Assessment of Classification
Error Rate from Novel Similarity Coefficients

Arkaprava Banerjee and Kunal Roy*
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ABSTRACT: The advancements in the field of cheminformatics 7 [ =) K=

have led to a reduction in animal testing to estimate the activity, - B comprsmmer G e

property, and toxicity of query chemicals. Read-across structure— oy MR W el b L ———

activity relationship (RASAR) is an emerging concept that utilizes M0 .

variows similarity functions derived from chemical information to :

develop highly predictive models. Unlike gquantitative structure— 1 | i | | P W

activity relationship (QSAR) models, RASAR descriptors of a query s =T o | \ freden

compound are computed from its close congeners instead of the © 7 Aeceseiesees @SS

compound itself, thus targeting predictions in the model training 1 L — m -

phase. The objective of the present study is not to propose new I

QSAR models for skin sensitization but to demonstrate the ,%'@ e o T * R
| Bl -

enhancement in the guality of predictions of the skin-sensitizing e
potential of organic compounds by developing dlassification-based
BASAR (c-RASAR) models. A diverse, previously curated data set was collected from the literature for which 2D descriptors were
computed. The extracted essential features were then used to develop a classification-based linear discriminant analysis (LDA)
(QSAR model. Furthermore, from the read-across-based predictions, RASAR descriptors were calculated using the basic settings of
the hyperparameters for the Laplacian Kemnel-based optimum similarity measure. After feature selection, an LDA c-RASAR model
was developed, which superseded the prediction guality of the LDA—(QSAR model. Varous other combinations of RASAR
descriptors were also taken to develop additional c-RASAR models, all showing better prediction quality than the LDA Q5AR model
while using a lower number of descriptors. Various other machine learning c-RASAR models were also developed for comparison
purposes. In this work, we have proposed and analyzed three new similarity metrics: g;,_class, sh, and s2. The first one is an indicator
variable used to generate a simple univariate c-RASAR model with good prediction ability, while the remaining two are similarity
indices used to analyze possible activity cliffs in the training and test sets and are believed to play an important role in the
modelability analysis of data sets.
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Read-across-based intelligent learning:
development of a global g-RASAR model for the
efficient quantitative predictions of skin

sensitization potential of diverse organic
chemicalsy

Arkaprava Eanerjee@ and Kunal Hoy@*

Environmental chemicals and contaminants cause a wide array of harmful implications to terrestrial and
aquatic life which ranges from skin sensitization to acute oral toxicity. The current study aims to assess
the gquantitative skin sensitization potential of a large set of industrial and emvironmental chemicals acting
through different mechanisms using the nowvel quantitative Read-Across Structure—Activity Relationship
(g-RASAR) approach. Based on the identified important set of structural and physicochemical features,
Read-Across-based hyperparameters were optimized using the training set compounds followed by the
calculation of similarity and error-based RASAR descriptors. Data fusion, further feature selection, and
removal of prediction confidence outliers were performed to generate a partial least squares (PLS) g-
RASAR model, folowed by the application of various Machine Learning (ML) tools to check the quality of
predictions. The PLS model was found to be the best among different models. A simple user-friendly
Java-based software tool was developed based on the PLS model, which efficiently predicts the toxicity
value(s) of query compound(s) along with their status of Applicability Domain (AD) in terms of leverage
values. This model has been developed using structurally diverse compounds and is expected to predict
efficiently and quantitatively the skin sensitization potential of environmental chemicals to estimate their
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Efficient predictions of cytotoxicity of TiO,-based multi-component
nanoparticles using a machine learning-based q-RASAR approach

Arkaprava Banerjee® ), Supratik Kar® ), Souvik Pore® and Kunal Roy?

°Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India;
°Chemometrics & Molecular Modeling Laboratory, Department of Chemistry, Kean University, Union, NJ, USA

ABSTRACT ARTICLE HISTORY
The availability of experimental nanotoxicity data is in general limited which warrants both the Received 15 December 2022
use of in silico methods for data gap filling and exploring novel methods for effective modeling. Revised 13 February 2023

Read-Across Structure-Activity Relationship (RASAR) is an emerging cheminformatic approach Accepted 26 February 2023
that combines the usefulness of a QSAR model and similarity-based Read-Across predictions. In
this work, we have generated simple, interpretable, and transferable quantitative-RASAR (g-
RASAR) models which can efficiently predict the cytotoxicity of TiO;-based multi-component
nanoparticles. A data set of 29 TiO,-based nanoparticles with specific amounts of noble metal
precursors was rationally divided into training and test sets, and the Read-Across-based predic-
tions for the test set were generated. The optimized hyperparameters and the similarity
approach, which yield the best predictions, were used to calculate the similarity and error-based
RASAR descriptors. A data fusion of the RASAR descriptors with the chemical descriptors was
done followed by the best subset feature selection. The final set of selected descriptors was
used to develop the g-RASAR models, which were validated using the stringent OECD criteria.
Finally, a random forest model was also developed with the selected descriptors, which could
efficiently predict the cytotoxicity of TiOs-based multi-component nanoparticles superseding
previously reported models in the prediction quality thus showing the merits of the g-RASAR
approach. To further evaluate the usefulness of the approach, we have applied the g-RASAR
approach also to a second cytotoxicity data set of 34 heterogeneous TiO,-based nanoparticles
which further confirmed the enhancement of external prediction quality of QSAR models after
incorporation of RASAR descriptors.

KEYWORDS

QSAR; g-RASAR; random
forest; machine learning;
TiO;-based nanoparticles

v
-
0

5




Conclusion

* These studies report the development of simple,

Interpretable, and reproducible g-RASAR models for
various toxicity (activity/property) endpoints.

The g-RASAR models reported here thus deliver
lower prediction errors for the query sets than
corresponding QSAR models, suggesting that they
are the potential models of choice for efficient
predictions using a given level of chemical
Information.

Based on the variable importance analysis, the
RASAR descriptors “RA score”, “gm’ and “average
similarity” appear efficient similarity-based
determinants for the prediction of toxicity which
warrants further extensive studies on these functions.
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Read-Across

More about g-RASAR il ~—————
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[ RASAR ]

Supervised learning (Response - dependent)

https://sites.google.com/site/kunalroyindia/home/rasar

https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home#h.i79rttmogénl |

Publications with g-RASAR modeling
from other laboratories

*Ecotoxicological QSAR study of fused/non-fused polycyclic aromatic hydrocarbons (FNFPAHS):
Assessment and priority ranking of the acute toxicity to Pimephales promelas by QSAR and
Tools developed by Arkaprava Banerjee consensus modeling methods. Science of The Total Environment, 876, 162736 (2023)

*|n silico assessment of risks associated with pesticides exposure during

pregnancy. Chemosphere, 329, 138649 (2023)

*Data driven toxicity assessment of organic chemicals against Gammarus species using QSAR
approach. Chemosphere 328, 138433 (2023)

*QSAR and Chemical Read-Across Analysis of 370 Potential MGMT Inactivators to Identify the
Structural Features Influencing Inactivation Potency. Pharmaceutics 15, 2170 (2023)
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